Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:3
  • preuzimanja u poslednjih 30 dana:3

Sadržaj

članak: 1 od 1  
2016, vol. 66, br. 5, str. 207-216
Da li su adultna neurogeneza i glukokortikoidna signalizacija spona između stresa i depresije?
aSection of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
bUniverzitet u Beogradu, Farmaceutski fakultet, Institut za fiziologiju

e-adresamarin.jukic@ki.se
Ključne reči: depresija; stres; hipokampus; adultna neurogeneza; glukokortikoidna signalizacija
Sažetak
Iako depresija značajno doprinosi morbiditetu na globalnom nivou, napredak u razumevanju patofiziologije ove bolesti je izuzetno spor, pa su posledično, otkrića novih terapeutskih mehanizama praktično u zastoju. Ciljni molekuli preko kojih deluju antidepresivi koji su danas u upotrebi identifikovani su reverznim inženjeringom lekova otkrivenih empirijski, kliničkim zapažanjima. Otkad je jasno pokazano postojanje novonastalih neurona, adultna neurogeneza je postala izuzetno atraktivna potencijalna meta delovanja kandidata za antidepresivne lekove. Uvođenje inhibitora kortikotropin-oslobađajućeg hormona imalo je za cilj da se iskoristi činjenica da glukokortikoidni hormoni inhibiraju adultnu neurogenezu i time doprinose antisdepresivnom efektu. Iako su se ovi lekovi pokazali kao neefikasni u trećoj fazi kliničkih studija, naučene su sledeće važne lekcije za budućnost: (1) razlike u funkcionisanju mozga ljudi i životinja moraju biti pažljivo razmotrene, (2) da bi se zaključilo da animalni model ima depresivni fenotip, isti je potrebno ubedljivo demonstrirati, po mogućstvu korišćenjem većeg broja bihejvioralnih testova i (3) varijacije u simptomima između različitih podklasa depresije treba uzeti u obzir imajući u vidu heterogenost oboljenja.
Reference
Altman, J., Das, G.D. (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. Journal of comparative neurology, 124(3): 319-35
Belmaker, R.H., Agam, G. (2008) Major Depressive Disorder. New England Journal of Medicine, 358(1): 55-68
Binneman, B., Feltner, D., Kolluri, S., Shi, Y., Qiu, R., Stiger, T. (2008) A 6-Week Randomized, Placebo-Controlled Trial of CP-316,311 (a Selective CRH 1 Antagonist) in the Treatment of Major Depression. American Journal of Psychiatry, 165(5): 617-620
Chalmers, D.T., Lovenberg, T.W., de Souza, E.B. (1995) Localization of novel corticotropin-releasing factor receptor (CRF2) mRNA expression to specific subcortical nuclei in rat brain: comparison with CRF1 receptor mRNA expression. Journal of neuroscience, 15(10): 6340-50
Clancy, B., Darlington, R.B., Finlay, B.L. (2001) Translating developmental time across mammalian species. Neuroscience, 105(1): 7-17
David, D.J., Samuels, B.A., Rainer, Q., Wang, J., Marsteller, D., Mendez, I., Drew, M., Craig, D.A., Guiard, B.P., Guilloux, J., Artymyshyn, R.P., Gardier, A.M., Gerald, C., Antonijevic, I. (2009) Neurogenesis-Dependent and -Independent Effects of Fluoxetine in an Animal Model of Anxiety/Depression. Neuron, 62(4): 479-493
Deng, W., Aimone, J.B., Gage, F.H. (2010) New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory?. Nature Reviews Neuroscience, 11(5): 339-350
Eriksson, P.S., Perfilieva, E., Bjork-Eriksson, T., Alborn, A.M., Nordborg, C., Peterson, D.A., Gage, F.H. (1998) Neurogenesis in the adult human hippocampus. Nat Med, 4(11): 1313-7
Ernst, A., Alkass, K., Bernard, S., Salehpour, M., Perl, S., Tisdale, J., Possnert, G., Druid, H., Frisén, J. (2014) Neurogenesis in the striatum of the adult human brain. Cell, 156(5): 1072-83
Fanselow, M.S., Dong, H. (2010) Are the Dorsal and Ventral Hippocampus Functionally Distinct Structures?. Neuron, 65(1): 7-19
Femenía, T., Gómez-Galán, M., Lindskog, M., Magara, S. (2012) Dysfunctional hippocampal activity affects emotion and cognition in mood disorders. Brain Research, 1476: 58-70
Hiroi, N., Wong, M.L., Licinio, J., Park, C., Young, M., Gold, P.W., Chrousos, G.P., Bornstein, S.R. (2001) Expression of corticotropin releasing hormone receptors type I and type II mRNA in suicide victims and controls. Molecular psychiatry, 6(5): 540-6
Holsboer, F. (2000) The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology, 23(5): 477-501
Holsboer, F., Ising, M. (2008) Central CRH system in depression and anxiety--evidence from clinical studies with CRH1 receptor antagonists. European journal of pharmacology, 583(2-3): 350-7
Kempermann, G. (2014) Off the beaten track: new neurons in the adult human striatum. Cell, 156(5): 870-1
Kessler, R.C., Chiu, W.T., Demler, O., Walters, E.E. (2005) Prevalence, severity, and comorbidity of 12-month DSM-iv disorders in the national comorbidity survey replication. Arch Gen Psychiatry, 62, str. 617-627
Klengel, T., Mehta, D., Anacker, C., Rex-Haffner, M., Pruessner, J.C., Pariante, C.M., Pace, T.W.W., Mercer, K.B., Mayberg, H.S., Bradley, B., Nemeroff, C.B., Holsboer, F., Heim, C.M. (2013) Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. Nature neuroscience, 16(1): 33-41
Lagali, P.S., Corcoran, C.P., Picketts, D.J. (2010) Hippocampus development and function: role of epigenetic factors and implications for cognitive disease. Clinical genetics, 78(4): 321-33
Lee, R.S., Tamashiro, K.L. K., Yang, X., Purcell, R.H., Harvey, A., Willour, V.L., Huo, Y., Rongione, M., Wand, G.S., Potash, J.B. (2010) Chronic Corticosterone Exposure Increases Expression and Decreases Deoxyribonucleic Acid Methylation ofFkbp5in Mice. Endocrinology, 151(9): 4332-4343
Major Depressive Disorder Working Group of the Psychiatric GWAS Consortium, Ripke, S., Wray, N.R., Lewis, C.M., Hamilton, S.P., Weissman, M.M., Breen, G., Byrne, E.M., Blackwood, D.H., Boomsma, D.I., Cichon, S., Heath, A.C., Holsboer, F., Lucae, S., Madden, P.A. (2013) A mega-analysis of genome-wide association studies for major depressive disorder. Mol Psychiatry, 18: 497-511
Makino, S., Hashimoto, K., Gold, P.W. (2002) Multiple feedback mechanisms activating corticotropin-releasing hormone system in the brain during stress. Pharmacol Biochem Behav, 73(1): 147-58
Malberg, J.E., Eisch, A.J., Nestler, E.J., Duman, S. (2000) Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci, 20:9104
McEwen, B.S., Weiss, J.M., Schwartz, L.S. (1968) Selective retention of corticosterone by limbic structures in rat brain. Nature, 220(5170): 911-2
McEwen, B.S. (2006) Plasticity of the Hippocampus: Adaptation to Chronic Stress and Allostatic Load. Annals of the New York Academy of Sciences, 933(1): 265-277
Murray, F., Smith, D.W., Hutson, P.H. (2008) Chronic low dose corticosterone exposure decreased hippocampal cell proliferation, volume and induced anxiety and depression like behaviours in mice. European journal of pharmacology, 583(1): 115-27
Nemeroff, C.B., Widerlöv, E., Bissette, G., Walléus, H., Karlsson, I., Eklund, K., Kilts, C.D., Loosen, P.T., Vale, W. (1984) Elevated concentrations of CSF corticotropin-releasing factor-like immunoreactivity in depressed patients. Science (New York, N.Y.), 226(4680): 1342-4
Nilsson, M., Perfilieva, E., Johansson, U., Orwar, O., Eriksson, P.S. (1999) Enriched environment increases neurogenesis in the adult rat dentate gyrus and improves spatial memory. Journal of neurobiology, 39(4): 569-78
Paez-Pereda, M., Hausch, F., Holsboer, F. (2011) Corticotropin releasing factor receptor antagonists for major depressive disorder. Expert opinion on investigational drugs, 20(4): 519-35
Ramos, A. (2008) Animal models of anxiety: do I need multiple tests?. Trends in pharmacological sciences, 29(10): 493-8
Sapolsky, R. M., Krey, L. C., McEwen, B. S. (1984) Glucocorticoid-sensitive hippocampal neurons are involved in terminating the adrenocortical stress response. Proceedings of the National Academy of Sciences, 81(19): 6174-6177
Small, S.A., Schobel, S.A., Buxton, R.B., Witter, M.P., Barnes, C.A. (2011) A pathophysiological framework of hippocampal dysfunction in ageing and disease. Nature reviews. Neuroscience, 12(10): 585-601
Smith, G.W., Aubry, J.M., Dellu, F., Contarino, A., Bilezikjian, L.M., Gold, L.H., Chen, R., Marchuk, Y., Hauser, C., Bentley, C.A., Sawchenko, P.E., Koob, G.F., Vale, W., Lee, K.F. (1998) Corticotropin releasing factor receptor 1-deficient mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine development. Neuron, 20(6): 1093-102
Surget, A., Tanti, A., Leonardo, E.D., Laugeray, A., Rainer, Q., Touma, C., Palme, R., Griebel, G., Ibarguen-Vargas, Y., Hen, R., Belzung, C. (2011) Antidepressants recruit new neurons to improve stress response regulation. Molecular psychiatry, 16(12): 1177-88
van der Knaap, L.J., Riese, H., Hudziak, J.J., Verbiest, M.P.J., Verhulst, F.C., Oldehinkel, A.J., van Oort, F.V.A. (2014) Glucocorticoid receptor gene (NR3C1) methylation following stressful events between birth and adolescence. The TRAILS study. Translational Psychiatry, 4(4): e381
van Praag, H., Kempermann, G., Gage, F.H. (1999) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci, 2(3): 266-70
Videbech, P., Ravnkilde, B. (2004) Hippocampal volume and depression: a meta-analysis of MRI studies. American journal of psychiatry, 161(11): 1957-66
Zorrilla, E.P., Koob, G.F. (2004) The therapeutic potential of CRF1 antagonists for anxiety. Expert opinion on investigational drugs, 13(7): 799-828
Zorrilla, E.P., Koob, G.F. (2010) Progress in corticotropin-releasing factor-1 antagonist development. Drug discovery today, 15(9-10): 371-83
 

O članku

jezik rada: engleski
vrsta rada: stručni članak
DOI: 10.5937/arhfarm1605207J
objavljen u SCIndeksu: 13.01.2017.

Povezani članci

Nema povezanih članaka