Metrika članka

  • citati u SCindeksu: 0
  • citati u Google Scholaru:[=>]
  • posete u prethodnih 30 dana:3
  • preuzimanja u prethodnih 30 dana:2
članak: 1 od 1  
Tehnika
2014, vol. 69, br. 2, str. 190-195
jezik rada: srpski
vrsta rada: izvorni naučni članak
doi:10.5937/tehnika1402190S


Radiolitička sinteza i karakterizacija provodnih polimernih membrana za alkalne gorivne ćelije, na bazi PVA i hitozana
aUniverzitet u Beogradu, Fakultet za fizičku hemiju
bUniverzitet u Beogradu, Institut za nuklearne nauke Vinča

Projekat

Litijum-jon baterije i gorivne celije-istraživanje i razvoj (MPNTR - 45014)
Funkcionalni, funkcionalizovani i usavršeni nano materijali (MPNTR - 45005)

Sažetak

Sintetisane su polimerne membrane za alkalne gorivne ćelije na bazi poli(vinil alkohola) i hitozana, uz korišćenje gama-zračenja za njihovo umrežavanje. Nakon bubrenja u 6 M rastvoru kalijum-hidroksida, ispitivani su jonska provodljivost i propustljivost na gasove dobijenih membrana, u funkciji temperature. Utvrneno je da poseduju visoku jonsku provodljivost u širokom opsegu temperatura, koja se nije menjala tokom nekoliko meseci. Na svim temperaturama i pritiscima na kojima su vršeni eksperimenti, nije zapaženo da su membrane propustljive za gasove. Ova svojstva ukazuju da membrane mogu imati potencijalnu primenu u alkalnim gorivnim ćelijama.

Ključne reči

alkalna gorivna ćelija; membrana; gama-zračenje; poli (vinilalkohol) (PVA); hitozan

Reference

Bhattacharya, A. (2000) Prog. Polym. Sci., 371-401; 25
Couture, G., Alaaeddine, A., Boschet, F., Ameduri, B. (2011) Polymeric materials as anion-exchange membranes for alkaline fuel cells. Progress in Polymer Science, 36(11): 1521-1557
Gryczka, U., Dondi, D., Chmielewski, A.G., Migdal, W., Buttafava, A., Faucitano, A. (2009) The mechanism of chitosan degradation by gamma and e-beam irradiation. Radiation Physics and Chemistry, 78(7-8): 543-548
Kang, B., Dai, Y.D., Zhang, H.Q., Chen, D. (2007) Polym. Degrad. Stab, 92, 359-362
Li, X., Liu, G., Popov, B.N. (2010) Activity and stability of non-precious metal catalysts for oxygen reduction in acid and alkaline electrolytes. Journal of Power Sources, 195(19): 6373-6378
Mclean, G. (2002) An assessment of alkaline fuel cell technology. International Journal of Hydrogen Energy, 27(5): 507-526
Merle, G., Wessling, M., Nijmeijer, K. (2011) Anion exchange membranes for alkaline fuel cells: A review. Journal of Membrane Science, 377(1-2): 1-35
Merle, G., Hosseiny, S.S., Wessling, M., Nijmeijer, K. (2012) New cross-linked PVA based polymer electrolyte membranes for alkaline fuel cells. Journal of Membrane Science, 409-410: 191-199
Ni, M., Leung, K.H.M., Leung, Y.C.D. (2006) WHEC 16, Lyon
Nikolic, V.M., Krkljes, A., Popovic, Z.K., Lausevic, Z.V., Miljanic, S.S. (2007) On the use of gamma irradiation crosslinked PVA membranes in hydrogen fuel cells. Electrochemistry Communications, 9(11): 2661-2665
Peppas, N.A., Merrill, E.W. (1976) Poly(vinyl alcohol) hydrogels: Reinforcement of radiation-crosslinked networks by crystallization. Journal of Polymer Science: Polymer Chemistry Edition, 14(2): 441-457
Peppas, N.A., Merrill, E.W. (1976) Differential scanning calorimetry of crystallized PVA hydrogels. Journal of Applied Polymer Science, 20(6): 1457-1465
Rosiak, J.M., Ulański, P. (1999) Synthesis of hydrogels by irradiation of polymers in aqueous solution. Radiation Physics and Chemistry, 55(2): 139-151
Schulze, M., Gülzow, E. (2004) Degradation of nickel anodes in alkaline fuel cells. Journal of Power Sources, 127(1-2): 252-263
Tahtat, D., Mahlous, M., Benamer, S., Khodja, A.N., Youcef, S.L., Hadjarab, N., Mezaache, W. (2011) Influence of some factors affecting antibacterial activity of PVA/Chitosan based hydrogels synthesized by gamma irradiation. Journal of Materials Science: Materials in Medicine, 22(11): 2505-2512
Tewari, A., Sambhy, V., Macdonald, M. U., Sen, A. (2006) Quantification of carbon dioxide poisoning in air breathing alkaline fuel cells. Journal of Power Sources, 153(1): 1-10
Ulanski, P., Sonntag, C.von (2000) OH-Radical-induced chain scission of chitosan in the absence and presence of dioxygen. Journal of the Chemical Society, Perkin Transactions 2, (10): 2022-2028
Varcoe, J.R., Slade, R.C.T. (2005) Prospects for Alkaline Anion-Exchange Membranes in Low Temperature Fuel-Cells. Fuel Cells, 5(2): 187-200
Wang, B., Mukataka, S., Kokufuta, E., Kodama, M. (2000) The influence of polymer concentration on the radiation-chemical yield of intermolecular crosslinking of poly(vinyl alcohol) by γ-rays in deoxygenated aqueous solution. Radiation Physics and Chemistry, 59(1): 91-95
Wang, Y., Qiao, J., Baker, R., Zhang, J. (2013) Alkaline polymer electrolyte membranes for fuel cell applications. Chemical Society reviews, 42(13): 5768-87
Wu, J., Yuan, X.Z., Martin, J.J., Wang, H., Zhang, J., Shen, J., Wu, S., Merida, W. (2008) A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies. Journal of Power Sources, 184(1): 104-119
Yang, C., Lin, S. (2002) Preparation of composite alkaline polymer electrolyte. Materials Letters, 57(4): 873-881
Yang, C., Lin, S., Hsu, S. (2003) Synthesis and characterization of alkaline polyvinyl alcohol and poly(epichlorohydrin) blend polymer electrolytes and performance in electrochemical cells. Journal of Power Sources, 122(2): 210-218
Zhang, H., Shen, P.K. (2012) Recent development of polymer electrolyte membranes for fuel cells. Chemical reviews, 112(5): 2780-832
Zhou, J., Ünlü, M., Anestis-Richard, I., Kohl, P.A. (2010) Crosslinked, epoxy-based anion conductive membranes for alkaline membrane fuel cells. Journal of Membrane Science, 350(1-2): 286-292