Metrika članka

  • citati u SCindeksu: 0
  • citati u Google Scholaru:[=>]
  • posete u prethodnih 30 dana:6
  • preuzimanja u prethodnih 30 dana:6
članak: 1 od 1  
Tehnika
2014, vol. 69, br. 2, str. 221-224
jezik rada: srpski
vrsta rada: stručni članak
doi:10.5937/tehnika1402221M


Biološka oksidacija polimetaličnih ruda kao potencijalna mogućnost za tretman rude iz ležišta 'Čoka Marin'
Univerzitet u Beogradu, Tehnički fakultet u Boru

Sažetak

Čoka Marin je polimetalično ležište, koje pored željenih metala sadrži Hg i As, tako da koncentrat koji se dobija preradom rude iz ovog ležišta ne može da se preranuje u topionici u Boru. U svetu već dugi niz godina postoje postrojenja koja za tretman rude ovakvog sastava, kao predtretman koriste biološku oksidaciju rude. Ova postrojenja su se pokazala kao dobra alternativa pirometalurškim procesima obrade rude, kako sa ekološke, tako i sa ekonomske strane. Iz ovih razloga bi bilo korisno ispitati mogućnost primene ovog postupka na koncentratu dobijenom iz rude Čoka Marin.

Ključne reči

Čoka Marin; biološka oksidacija; zlato

Reference

Abbruzzese, C., Ubaldini, S., Veglio, F., Toro, L. (1994) Preparatory bioleaching to the conventional cyanidation of arsenical gold ores. Minerals Engineering, 7(1): 49-60
Arrascue, M.E., van Niekerk, J. (2006) Biooxidation of arsenopyrite concentrate using BIOX® process: Industrial experience in Tamboraque, Peru. Hydrometallurgy, 83(1-4): 90-96
Brandl, H., Faramarzi, M.A. (2006) Microbe-metal-interactions for the biotechnological treatment of metal-containing solid waste. China Particuology, 4(2): 93-97
Brierley, J.A. (2003) Response of microbial systems to thermal stress in biooxidation-heap pretreatment of refractory gold ores. Hydrometallurgy, 71(1-2): 13-19
Broadhurst, J.L. (1994) Neutralisation of arsenic bearing BIOX® liquors. Minerals Engineering, 7(8): 1029-1038
Canales, C., Acevedo, F., Gentina, J. (2002) Laboratory-scale continuous bio-oxidation of a gold concentrate of high pyrite and enargite content. Process Biochemistry, 37(10): 1051-1055
Chan, B.K.C., Bouzalakos, S. (2008) Trans. Nonfrros Met. Soc. China, 18, p. 1497-1505
EEPUSDE (2002) Energy and Environmental Profile of the U.S. Department of Energy. December. http://www1.eere.energy.gov/manufacturing/resources/mining/pdfs/gold-silver.pdf
Elorza-Rodríguez, E., Nava-Alonso, F., Jara, J., Lara-Valenzuela, C. (2006) Treatment of pyritic matrix gold-silver refractory ores by ozonization-cyanidation. Minerals Engineering, 19(1): 56-61
Estay, H., Ortiz, M., Romero, J. (2013) A novel process based on gas filled membrane absorption to recover cyanide in gold mining. Hydrometallurgy, 134-135: 166-176
Ford, K.J.R., Henderson, R.D. (2008) Tehnical bulletin, 5, p. 11-12
Gomidželović, L.D., Požega, E.D., Trujić, V.K. (2010) The possibilities of the utilization of the polymetallic concentrate Čoka Marin. Journal of the Serbian Chemical Society, vol. 75, br. 12, str. 1733-1741
Harvey, T., van der Merwe, W., Afewu, K. (2002) The application of the GeoBiotics GEOCOAT® biooxidation technology for the treatment of sphalerite at Kumba resources’ Rosh Pinah mine. Minerals Engineering, 15(11): 823-829
Hemispheric Center for Environmental Technology (2001)
Hilson, G., Monhemius, A.J. (2006) Alternatives to cyanide in the gold mining industry: what prospects for the future?. Journal of Cleaner Production, 14(12-13): 1158-1167
Hylander, L.D., Meili, M. (2003) Sci. Tot. Environ, 304, p. 13-27
Karamata, S., Zivković, P., Pecskkay, Z., Knezevic, V., Cvetkovic, V. (1997) Rom. J. Mineral Deposits, 78, p. 79-84
Kondrat`eva, T.F., Pivovarova, T.A., Bulaev, A.G., Melamud, V.S., Muravyov, M.I., Usoltsev, A.V., Vasil`ev, E.A. (2012) Percolation bioleaching of copper and zinc and gold recovery from flotation tailings of the sulfide complex ores of the Ural region, Russia. Hydrometallurgy, 111-112: 82-86
Langhans, D., Lord, A., Lampshire, D., Burbank, A., Baglin, E. (1995) Biooxidation of an arsenic-bearing refractory gold ore. Minerals Engineering, 8(1-2): 147-158
Lawrence, R.W., López, O. (2011) Improving the economics of gold'copper ore projects using SART technology. u: World Gold 2011 in Montreal, October 3- 4
Olson, G.J., Brierley, J.A., Brierley, C.L. (2003) Bioleaching review part B: progress in bioleaching: applications of microbial processes by the minerals industries. Applied microbiology and biotechnology, 63(3): 249-57
Pacevski, A., Moritz, R., Kouzmanov, K., Marquardt, K., Zivkovic, P., Cvetkovic, L. (2012) Texture and composition of pb-bearing pyrite from the coka marin polymetallic deposit, Serbia, controlled by nanoscale inclusions. Canadian Mineralogist, 50(1): 1-20
Rawlings, D.E. (2004) Pure Appl. Chem, 76, p. 847-859
Rawlings, D.E. (2011) China. p. 18-22
Rawlings, D.E., Dew, D., du Plessis, C. (2003) Biomineralization of metal-containing ores and concentrates. Trends in biotechnology, 21(1): 38-44
SGS (2009) Minerals services - T3 SGS 019: Cyanide recovery. ttp://www.sgs.com/~/media/Global/- Documents/Flyers%20and%20Leaflets/SGS-MINWA016- Cyanide-Recovery-Comparison-EN-11.pdf
Syed, S. (2012) Recovery of gold from secondary sources-A review. Hydrometallurgy, 115-116: 30-51
USEPA-U.S. Environmental Protection Agency (1994) December
Watling, H.R. (2006) The bioleaching of sulphide minerals with emphasis on copper sulphides - A review. Hydrometallurgy, 84(1-2): 81-108
Wiertz, J.V., Mateo, M., Escobar, B. (2006) Mechanism of pyrite catalysis of As(III) oxidation in bioleaching solutions at 30 °C and 70 °C. Hydrometallurgy, 83(1-4): 35-39