Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u prethodnih 30 dana:1
  • preuzimanja u prethodnih 30 dana:1
članak: 1 od 1  
Tehnika
2014, vol. 69, br. 3, str. 367-372
jezik rada: srpski
vrsta rada: izvorni naučni članak
doi:10.5937/tehnika1403367D


Određivanje površinskih grupa Boemovom metodom na mehanohemijski modifikovanoj ugljeničnoj tkanini
aUniverzitet u Beogradu, Institut za nuklearne nauke Vinča
bUniverzitet u Beogradu, Fakultet za fizičku hemiju

Sažetak

Da bi se poboljšale adsorpcione osobine ugljenične tkanine primenjena je metoda mehaničkog mlevenja u inertnoj i atmosferi vazduha. Za praćenje promena broja i vrste površinskih grupa izazvanih mehaničkim mlevenjem, korišćena je Boemova metoda. Broj baznih grupa od 0,2493 mmol/g je značajno manji od ukupnog broja kiselih funkcionalnih grupa, 2,5093 mmol/g. Od kiselih grupa prisutnih na površini, najzastupljenije su fenolne grupe (2,3846 mmol/g) tj. >95%, karboksilne grupe su znatno manje prisutne na površini (0,1173 mmol/g) tj. 4,5%, dok je zastupljenost laktonskih grupa na površini zanemarljiva (0,0076 mmol/g), ispod 0,3%. Upotreba mehaničkog mlevenja dovodi do povećanja broja kiselih i baznih grupa na površini ugljenične tkanine. Mlevenje u inertnim uslovima ima dominantniji uticaj u pogledu promene ukupnog broja baznih funkcionalnih grupa u odnosu na mlevenje u atmosferi vazduha: broj baznih grupa za tkaninu mlevenu u argonu je 0,8153 mmol/g, na vazduhu je 0,7933 mmol/g, dok je broj kiselih grupa 2,9807 mmol/g za uzorak mleven u argonu i 3,5313 mmol/g za mleven na vazduhu.

Ključne reči

ugljenična tkanina; mehanohemijska modifikacija; površinske grupe; Boemova metoda

Reference

Afkhami, A., Madrakian, T., Amini, A., Karimi, Z. (2008) Effect of the impregnation of carbon cloth with ethylenediaminetetraacetic acid on its adsorption capacity for the adsorption of several metal ions. Journal of hazardous materials, 150(2): 408-12
Alonso-Davila, P., Torres-Rivera, O.L., Leyva-Ramos, R., Ocampo-Perez, R. (2012) Carbon, 50, 2226-2234
Ania, C.O., Béguin, F. (2007) Mechanism of adsorption and electrosorption of bentazone on activated carbon cloth in aqueous solutions. Water research, 41(15): 3372-80
Arulanantham, A., Balasubramanian, N., Ramakrishna, T.V. (1989) Met. Finish, 87, 51-55
Ayotamuno, M.J., Kogbara, R.B., Ogaji, S.O.T., Probert, S.D. (2006) Petroleum contaminated ground-water: Remediation using activated carbon. Applied Energy, 83(11): 1258-1264
Babić, B., Milonjić, S., Polovina, M., Čupić, S., Kaludjerović, B. (2002) Adsorption of zinc, cadmium and mercury ions from aqueous solutions on an activated carbon cloth. Carbon, 40(7): 1109-1115
Boehm, H.P. (1994) Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon, 32(5): 759-769
Bottani, E.J., Tascón, J.M.D. (2011) Adsorption by carbons: Novel carbon adsorbents. Elsevier Ltd, 301 s. (p)
Cristóbal, A.G. S., Castelló, R., Luengo, M.A. M., Vizcayno, C. (2010) Zeolites prepared from calcined and mechanically modified kaolinsA comparative study. Applied Clay Science, 49(3): 239-246
Figueiredo, J., Pereira, M., Freitas, M., Órfão, J. (1999) Modification of the surface chemistry of activated carbons. Carbon, 37(9): 1379-1389
Goertzen, S.L., Thériault, K.D., Oickle, A.M., Tarasuk, A.C., Andreas, H.A. (2010) Standardization of the Boehm titration. Part I. CO2 expulsion and endpoint determination. Carbon, 48(4): 1252-1261
Harry, I.D., Saha, B., Cumming, I.W. (2007) Surface properties of electrochemically oxidised viscose rayon based carbon fibres. Carbon, 45(4): 766-774
Hayashi, J., Kazehaya, A., Muroyama, K., Watkinson, A. (2000) Preparation of activated carbon from lignin by chemical activation. Carbon, 38(13): 1873-1878
Helfferich, F. Ion exchange. New York: Dover Publications, Chapter 8, 993
Hesas, R.H., Arami-Niya, A., Daud, W.M.A.W., Sahu, J.N. (2013) Preparation and Characterization of Activated Carbon from Apple Waste by Microwave-Assisted Phosphoric Acid Activation: Application in Methylene Blue Adsorption. BioResources, 8(2): 2950-2966
Kaludjerovic, B.V., Trtica, M.S., Radak, B.B., Stašić, J.M., Krstić-Mušović, S.S., Dodevski, V.M. (2011) Analysis of the Interaction of Pulsed Laser with Nanoporous Activated Carbon Cloth. Journal of Materials Science and Technology, 27(11): 979-984
Kaludjerović, B., Trtica, M., Babić, B., Radak, B., Ionin, A. (2008) Carbon cloth damage induced by various shapes of CO2 laser pulses. Laser Physics, 18(4): 413-416
Khraisheh, M., Aldegs, Y., Mcminn, W. (2004) Remediation of wastewater containing heavy metals using raw and modified diatomite. Chemical Engineering Journal, 99(2): 177-184
Macchi, G., Maroni, D., Tiravarthi, G. (1986) Uptake of mercury by exhausted coffee grounds. Environmental Technology, 7(1): 431
Metivier-Pignon, H., Faur, C., Le, C.P. (2007) Adsorption of dyes onto activated carbon cloth: using QSPRs as tools to approach adsorption mechanisms. Chemosphere, 66(5): 887-93
Montinaro, S., Concas, A., Pisu, M., Cao, G. (2008) Immobilization of heavy metals in contaminated soils through ball milling with and without additives. Chemical Engineering Journal, 142(3): 271-284
Nenadović, S., Nenadović, M., Kovačević, R., Matović, Lj., Matović, B., Jovanović, Z., Novaković-Grbović, J. (2009) Influence of diatomite microstructure on its adsorption capacity for Pb(II). Science of Sintering, vol. 41, br. 3, str. 309-317
Panday, K.K., Prasad, G., Singh, V.N. (1985) Copper(II) removal from aqueous solutions by fly ash. Water Research, 19(7): 869-873
Perrin-Sarazin, F., Sepehr, M., Bouaricha, S., Denault, J. (2009) Potential of ball milling to improve clay dispersion in nanocomposites. Polymer Engineering and Science, 49(4): 651-665
Puri, B., Singh, D.D., Nath, J., Sharma, L. (1958) Chemisorption of Oxygen on Activated Charcoal and Sorption of Acids and Bases. Industrial and Engineering Chemistry, 50(7): 1071-1074
Shen, W., Li, Z., Liu, Y. (2010) Surface Chemical Functional Groups Modification of Porous Carbon. Recent Patents on Chemical Engineering, 1(1): 27-40
Shim, J., Park, S., Ryu, S. (2001) Effect of modification with HNO3 and NaOH on metal adsorption by pitch-based activated carbon fibers. Carbon, 39(11): 1635-1642
Sljivic, M., Smiciklas, I., Pejanovic, S., Plecas, I. (2009) Comparative study of Cu2+ adsorption on a zeolite, a clay and a diatomite from Serbia. Applied Clay Science, 43(1): 33-40
Tan, I.A.W., Ahmad, A.L., Hameed, B.H. (2008) Preparation of activated carbon from coconut husk: optimization study on removal of 2,4,6-trichlorophenol using response surface methodology. Journal of hazardous materials, 153(1-2): 709-17
Zamazow, M.J., Murphy, J.E. (1992) Removal of metal cations from water using zeolites. Separation Science and Technology, 27(14): 1969
Zhang, S., Li, X., Chen, J. P. (2010) Preparation and evaluation of a magnetite-doped activated carbon fiber for enhanced arsenic removal. Carbon, 48(1): 60-67