Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u prethodnih 30 dana:0
  • preuzimanja u prethodnih 30 dana:0
članak: 1 od 1  
Tehnika
2014, vol. 69, br. 3, str. 373-376
jezik rada: srpski
vrsta rada: izvorni naučni članak
doi:10.5937/tehnika1403373K


Sinteza i karakterizacija LiFePo4/C katodnog materijala dobijenog pomoću postupka liofilizacije u prisustvu PVP-a
aSrpska akademija nauke i umetnosti (SANU), Beograd, Institut tehničkih nauka
bUniverzitet u Beogradu, Institut za nuklearne nauke Vinča
cUniverzitet u Beogradu, Tehnološko-metalurški fakultet
dUniverzitet u Beogradu, Fakultet za fizičku hemiju

Projekat

Molekularno dizajniranje nanocestica kontrolisanih morfoloških i fizicko-hemijskih karakteristika i funkcionalnih materijala na njihovoj osnovi (MPNTR - 45004)

Sažetak

Litijum gvožđe fosfat je jedan od najperspektivnijih katodnih materijala za upotrebu u litijum jonskim baterijama. Kompozitni materijal LiFePO4/C uspešno je sintetisan postupkom liofilizacije u prisustvu PVP-a kao izvora ugljenika. Glavna prednost ovog načina sinteze je mešanje prekursora na atomskom nivou i mogućnost uvođenja izvora ugljenika u prekursorski rastvor tokom sinteze. Sam postupak može se podeliti na tri faze: zamrzavanje prekursorskog rastvora, sušenje pod vakuumom i kalcinacija u blagoj redukcionoj atmosferi. Fazni sastav sintetisanog materijala je ispitan rendgenskom difrakcijom na prahu i potvrđeno je da je dobijen monofazni uzorak LiFePO4, sa veličinom kristalita od 45,8 nm. Morfologija i veličina čestica je ispitana skanirajućom elektronskom mikroskopijom i difrakcijom laserske svetlosti. Galvanostatsko cikliranje u opsegu napona 2,3-4,1 V u odnosu na Li/Li+, pokazuje ponašanje tipično za LiFePO4 sa platoom na oko 3,4 V. Kapacitet pražnjenja pri malim strujnim gustinama je 154 mAhg-1što iznosi 90% teorijskog kapaciteta, dok sa povećanjem gustine struje kapacitet opada.

Ključne reči

LiFePO4; katodni materijali; litijum jonske baterije; liofilizacioni postupak

Reference

Andersson, A., Thomas, J. (2001) The source of first-cycle capacity loss in LiFePO4. Journal of Power Sources, 97-98: 498-502
Chen, Q., Qiao, X., Peng, C., Zhang, T., Wang, Y., Wang, X. (2012) Electrochemical performance of electrospun LiFePO4/C submicrofibers composite cathode material for lithium ion batteries. Electrochimica Acta, 78: 40-48
Cho, T., Chung, H. (2004) Synthesis of olivine-type LiFePO4 by emulsion-drying method. Journal of Power Sources, 133(2): 272-276
Cui, Y., Zhao, X., Guo, R. (2010) Mater. Res. Bull, 45, p. 844-849
Cui, Y., Zhao, X., Guo, R. (2010) Improved electrochemical performance of La0.7Sr0.3MnO3 and carbon co-coated LiFePO4 synthesized by freeze-drying process. Electrochimica Acta, 55(3): 922-926
Dominko, R., Goupil, J.M., Bele, M., Gaberscek, M., Remskar, M., Hanzel, D., Jamnik, J. (2005) Impact of LiFePO[sub 4]∕C Composites Porosity on Their Electrochemical Performance. Journal of The Electrochemical Society, 152(5): A858
Huang, G., Li, W., Sun, H., Wang, J., Zhang, J., Jiang, H., Zhai, F. (2013) Polyvinylpyrrolidone (PVP) assisted synthesized nano-LiFePO4/C composite with enhanced low temperature performance. Electrochimica Acta, 97: 92-98
Jugović, D., Uskoković, D. (2009) A review of recent developments in the synthesis procedures of lithium iron phosphate powders. Journal of Power Sources, 190(2): 538-544
Jugović, D., Mitrić, M., Kuzmanović, M., Cvjetićanin, N., Škapin, S., Cekić, B., Ivanovski, V., Uskoković, D. (2011) Preparation of LiFePO4/C composites by co-precipitation in molten stearic acid. Journal of Power Sources, 196(10): 4613-4618
Koleva, V., Zhecheva, E., Stoyanova, R. (2009) A new phosphate-formate precursor method for the preparation of carbon coated nano-crystalline LiFePO4. Journal of Alloys and Compounds, 476(1-2): 950-957
Ou, X., Gu, H., Wu, Y., Lu, J., Zheng, Y. (2013) Chemical and morphological transformation through hydrothermal process for LiFePO4 preparation in organic-free system. Electrochimica Acta, 96: 230-236
Padhi, A.K. (1997) Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries. Journal of The Electrochemical Society, 144(4): 1188
Padhi, A.K. (1997) Effect of Structure on the Fe[sup 3+]∕Fe[sup 2+] Redox Couple in Iron Phosphates. Journal of The Electrochemical Society, 144(5): 1609
Palomares, V., Goñi, A., de Muro, G.I., de Meatza, I., Bengoechea, M., Cantero, I., Rojo, T. (2009) Influence of Carbon Content on LiFePO[sub 4]/C Samples Synthesized by Freeze-Drying Process. Journal of The Electrochemical Society, 156(10): A817
Palomares, V., Goñi, A., de Muro, I.G., de Meatza, I., Bengoechea, M., Miguel, O., Rojo, T. (2007) New freeze-drying method for LiFePO4 synthesis. Journal of Power Sources, 171(2): 879-885
Prosini, P. (2002) Determination of the chemical diffusion coefficient of lithium in LiFePO4. Solid State Ionics, 148(1-2): 45-51
Wang, S., Yang, H., Feng, L., Sun, S., Guo, J., Yang, Y., Wei, H. (2013) A simple and inexpensive synthesis route for LiFePO4/C nanoparticles by co-precipitation. Journal of Power Sources, 233: 43-46
Whittingham, M. (2004) Lithium batteries and cathode materials. Chemical reviews, 104(10): 4271-301
Xi, X., Chen, G., Nie, Z., He, S., Pi, X., Zhu, X., Zhu, J., Zuo, T. (2010) Preparation and performance of LiFePO4 and LiFePO4/C cathodes by freeze-drying. Journal of Alloys and Compounds, 497(1-2): 377-379
Yang, S., Zavalij, P.Y., Whittingham, M. S. (2001) Hydrothermal synthesis of lithium iron phosphate cathodes. Electrochemistry Communications, 3(9): 505-508
Zhecheva, E., Mladenov, Ml., Zlatilova, P., Koleva, V., Stoyanova, R. (2010) Particle size distribution and electrochemical properties of LiFePO4 prepared by a freeze-drying method. Journal of Physics and Chemistry of Solids, 71(5): 848-853