Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u prethodnih 30 dana:9
  • preuzimanja u prethodnih 30 dana:6
članak: 1 od 1  
Tehnika
2014, vol. 69, br. 3, str. 453-458
jezik rada: srpski
vrsta rada: izvorni naučni članak
doi:10.5937/tehnika1403453P


Fiber optički senzori krivine na bazi rešetki sa dugim periodom i njihova primena u pulmologiji
aUniverzitet u Beogradu, Institut za nuklearne nauke Vinča
bUniverzitet u Beogradu, Medicinski fakultet, KBC 'Bežanijska kosa'
cInstitute of Photonic Technologies, Aston University, UK

Sažetak

U ovom radu predstavili smo fiber-optički senzor krivine na bazi rešetke sa dugim periodom i njegovu primenu u praćenju disanja pri mehaničkoj ventilaciji pacijenata. Predložena šema merenja koristi monohromatski izvor svetlosti i fotodiodu kao detektor što je čini ekonomičnom i jednostavnom za upotrebu. Ovde smo demonstrirali primenu senzora u merenju disajnih zapremina koja se zasniva na korelaciji izmenu promene zapremine pluća i promene lokalne krivine torza. Poređenjem rezultata studije na skupu od 15 zdravih dobrovoljaca sa konkurentnim metodima zaključujemo da je predloženi neinvazivni metod pogodan za kliničku praksu.

Ključne reči

senzor; fiber-optička rešetka; disajna zapremina

Reference

Allsop, T., Webb, D.J., Bennion, I. (2003) Investigations of the spectral sensitivity of long period gratings fabricated three-layered optical fiber. Journal of Lightwave Technology, 21(1): 264-268
Allsop, T., Carroll, K., Lloyd, G., Webb, D.J., Miller, M., Bennion, I. (2007) Application of long-period-grating sensors to respiratory plethysmography. Journal of biomedical optics, 12(6): 064003
Babchenko, A., Khanokh, B., Shomer, Y., Nitzan, M. (1999) Fiber optic sensor for the measurement of respiratory chest circumference changes. Journal of biomedical optics, 4(2): 224-9
Barbosa, R.C.C., de Carvalho, C.R.F., Moriya, H.T. (2012) Respiratory inductive plethysmography: a comparative study between isovolume maneuver calibration and qualitative diagnostic calibration in healthy volunteers assessed in different positions. Jornal brasileiro de pneumologia, 38(2): 194-201
Battista, S., et al. (2011) Medical measurements and applications proceedings. pp. 29-34
Baudouin, S.V. (2002) The pulmonary physician in critical care 3: Critical care management of community acquired pneumonia. Thorax, 57(3): 267-271
Bennion, I., Williams, J.A.R., Zhang, L., Sugden, K., Doran, N.J. (1996) Uv-written in-fibre Bragg gratings. Optical and Quantum Electronics, 28(2): 93-135
Erdogan, T. (1997) Cladding-mode resonances in short- and long-period fiber grating filters. Journal of the Optical Society of America A, 14(8): 1760
Folke, M., Cernerud, L., Ekström, M., Hök, B. (2003) Critical review of non-invasive respiratory monitoring in medical care. Medical and biological engineering and computing, 41(4): 377-83
Grillet, A., Kinet, D., Witt, J., Schukar, M., Krebber, K., Pirotte, F., Depre, A. (2008) Optical Fiber Sensors Embedded Into Medical Textiles for Healthcare Monitoring. IEEE Sensors Journal, 8(7): 1215-1222
Homola, J., Yee, S.S., Gauglitz, G. (1999) Surface plasmon resonance sensors: review. Sensors and Actuators B: Chemical, 54(1-2): 3-15
James, S.W., Tatam, R.P. (2003) Optical fibre long-period grating sensors: characteristics and application. Measurement Science and Technology, 14(5): R49-R61
Kashyap, R. (2010) Fiber Bragg Gratings. Academic, str. 119-187
Konno, K., Mead, J. (1967) Measurement of the separate volume changes of rib cage and abdomen during breathing. Journal of Applied Physiology, 22(3): 407-22
Mathew, J., Semenova, Y., Farrell, G. (2012) A miniature optical breathing sensor. Biomedical optics express, 3(12): 3325-31
Mehta, S., Hill, N.S. (2001) Noninvasive ventilation. American Journal of Respiratory and Critical Care Medicine, 163(2): 540-77
Neuman, P., et al. (1998) Chest, 113, pp. 443-45
Othonos, A., Kalli, K. (1999) Fibre Bragg gratings: Fundamentals and applications in telecommunications and sensing. Artech House
Petrovic, J., Lai, Y., Bennion, I. (2008) Numerical and experimental study of microfluidic devices in step-index optical fibers. Applied Optics, 47(10): 1410
Petrovic, M., et al. (2013) Annual international conference of the IEEE engineering in medicine and biology society, Proceedings of. 2013, pp. 2660-2663
Petrović, M.D., Petrovic, J., Daničić, A., Vukčević, M., Bojović, B., Hadžievski, Lj., Allsop, T., Lloyd, G., Webb, D.J. (2014) Non-invasive respiratory monitoring using long-period fiber grating sensors. Biomedical Optics Express, 5(4): 1136
Silva, A., et al. (2011) Meas. Sci. Technol, 22, pp. 075801-075805
Strömberg, N.O. (2001) Error analysis of a natural breathing calibration method for respiratory inductive plethysmography. Medical and biological engineering and computing, 39(3): 310-4
Watson, H. (1980) ISAM Proc. 3rd Intl. Symp. ambulatory monitoring, academic, San Diego. p. 537
Wechowski, J., i dr. (1990) J Appl. Physiol, 68, pp. 1732-1738
Wehrle, G., Nohama, P., Kalinowski, H.J., Torres, P.I., Valente, L.C.G. (2001) A fibre optic Bragg grating strain sensor for monitoring ventilatory movements. Measurement Science and Technology, 12(7): 805-809
Whyte, K.F., Gugger, M., Gould, G.A., Molloy, J., Wraith, P.K., Douglas, N.J. (1991) Accuracy of respiratory inductive plethysmograph in measuring tidal volume during sleep. Journal of Applied Physiology, 71(5): 1866-71
Ye, C.C., James, S.W., Tatam, R.P. (2000) Simultaneous temperature and bend sensing with long-period fiber gratings. Optics letters, 25(14): 1007-9