Metrika članka

  • citati u SCindeksu: 0
  • citati u Google Scholaru:[=>]
  • posete u prethodnih 30 dana:3
  • preuzimanja u prethodnih 30 dana:2
članak: 1 od 1  
Tehnika
2014, vol. 69, br. 4, str. 563-568
jezik rada: engleski
vrsta rada: izvorni naučni članak
doi:10.5937/tehnika1404563M


Antimikrobni hidrogelovi na bazi 2-hidroksietil metakrilata i itakonske kiseline koji sadrže srebro(I) jon
Univerzitet u Beogradu, Tehnološko-metalurški fakultet

Projekat

Hemijsko i strukturno dizajniranje nanomaterijala za primenu u medicini i inženjerstvu tkiva (MPNTR - 172026)
Sinteza i karakterizacija novih funkcionalnih polimera i polimernih nanokompozita (MPNTR - 172062)

Sažetak

Cilj našeg istraživanja je bio da se razviju novi antimikrobni hidrogelovi. Srebro/poli(2-hidroksietil metakrilat/itakonska kiselina) (Ag/P(HEMA/IK)) hidrogelovi su sintetisani, i proučavano je kontrolisano otpuštanje srebro(I) jona iz Ag/P(HEMA/IK) hidrogelova, kao i njihov antimikrobni potencijal. P(HEMA/IK) uzorci, sa različitim odnosima monomera HEMA/IK, dobijeni su radikalnom kopolimerizacijom/ umrežavanjem. Ag/P(HEMA/IK) hidrogelovi su formirani potapanjem suvih diskova gelova u srebro(I) so, što je i potvrđeno FTIR spektroskopijom. Ispitani su kontrolisano otpuštanje srebro(I) jona iz Ag/P(HEMA/IA) gelova in vitro, kao i antimikrobna aktivnost tokom perioda otpuštanja. Profili otpuštanja su pokazali dve faze (eksponencijalni rast), sa brzom početnom fazom, a zatim sporijom brzinom otpuštanja. Antimikrobna aktivnost u toku otpuštanja u maloj meri zavisi od sadržaja IA i vremena otpuštanja. Odličan antimikrobni potencijal se održava tokom celog vremena otpuštanja. Na osnovu dobijenih rezultata proizilazi da se Ag/P(HEMA/IK) hidrogelovi mogu koristiti u širokom spektru biomedicinskih primena.

Ključne reči

2-Hidroksietil metakrilat; itakonska kiselina; hidrogel; srebro(I) jon; kontrolisanootpuštanje; antimikrobni potencijal

Reference

Abraham, S., Brahim, S., Ishihara, K., Guiseppi-Elie, A. (2005) Molecularly engineered p(HEMA)-based hydrogels for implant biochip biocompatibility. Biomaterials, 26(23): 4767-4778
Barrett, G.D., Constable, I.J., Stewart, A.D. (1986) Clinical results of hydrogel lens implantation. Journal of Cataract and Refractive Surgery, 12(6): 623-631
Houghton, P.J., Hylands, P.J., Mensah, A.Y., Hensel, A., Deters, A.M. (2005) In vitro tests and ethnopharmacological investigations: wound healing as an example. Journal of ethnopharmacology, 100(1-2): 100-7
Jovašević, J.S., Mićić, M.M., Suljovrujić, E.H., Filipović, J.M., Dimitrijević, S.I., Tomić, S.Lj. (2010) Antimicrobial activity of hybrid hydrogels based on poly(vinylpyrrolidone) containing silver. Hemijska industrija, vol. 64, br. 3, str. 209-214
Kenawy, E., Worley, S.D., Broughton, R. (2007) The Chemistry and Applications of Antimicrobial Polymers:  A State-of-the-Art Review. Biomacromolecules, 8(5): 1359-1384
Kim, J.S., Kuk, E., Yu, K.Y., Kim, J.H., Park, Y.K., Park, Y.H., Hwang, C.Y., Kim, Y.K., Lee, Y.S., Jeong, D.H., Cho, M.H. (2007) Nanomed. Nanotechnol, 1, 3, p. 95-101
Klibanov, A.M. (2007) Permanently microbicidal materials coatings. Journal of Materials Chemistry, 17(24): 2479
Kong, H., Jang, J. (2008) Antibacterial Properties of Novel Poly(methyl methacrylate) Nanofiber Containing Silver Nanoparticles. Langmuir, 24(5): 2051-2056
Kopeček, J., Yang, J. (2007) Hydrogels as smart biomaterials. Polymer International, 56(9): 1078-1098
Martineau, L., Shek, P.N. (2006) Evaluation of a bi-layer wound dressing for burn care. Burns, 32(2): 172-179
Menapace, R., Skorpik, C., Juchem, M., Scheidel, W., Schranz, R. (1989) Evaluation of the first 60 cases of poly HEMA posterior chamber lenses implanted in the sulcus. Journal of Cataract and Refractive Surgery, 15(3): 264-271
Mićić, M.M., Tomić, S.Lj., Filipović, J.M., Suljovrujić, E.H. (2009) Silver(I)-complexes with an itaconic acid-based hydrogel. Hemijska industrija, vol. 63, br. 3, str. 137-142
Muñoz-Bonilla, A., Fernández-García, M. (2012) Polymeric materials with antimicrobial activity. Progress in Polymer Science, 37(2): 281-339
Peppas, N.A., Hilt, J.Z., Khademhosseini, A., Langer, R. (2006) Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology. Advanced Materials, 18(11): 1345-1360
Prasitsilp, M., Siriwittayakorn, T., Molloy, R., Suebsanit, N., Siriwittayakorn, P., Veeranondha, S. (2003) Journal of Materials Science: Materials in Medicine, 14, 595
Ratner, B.D., Hoffman, S.A., Schoen, J.F., Lemons, E.J. (2004) Blomaterials science: An introduction to materials in medicine. London: Elsevier Academic Press
Sawan, S.P., Manivannan, G. (1999) Antimicrobial/anti-infective materials: Principles and applications. USA: CRC Press
Silverstein, R.M., Bassler, G.C., Morrill, J.C. (1991) Spectrometric identification of organic compounds. New York: John Wiley & Sons
Slaughter, B.V., Khurshid, S.S., Fisher, O.Z., Khademhosseini, A., Peppas, N.A. (2009) Hydrogels in regenerative medicine. Advanced materials (Deerfield Beach, Fla.), 21(32-33): 3307-29
Stará, H., Starý, Z., Münstedt, H. (2011) Silver Nanoparticles in Blends of Polyethylene and a Superabsorbent Polymer: Morphology and Silver Ion Release. Macromolecular Materials and Engineering, 296(5): 423-427
Tomić, S.Lj., Suljovrujić, E.H., Filipović, J.M. (2006) Biocompatible and bioadhesive hydrogels based on 2-hydroxyethyl methacrylate, monofunctional poly(alkylene glycol)s and itaconic acid. Polymer Bulletin, 57(5): 691-702
Yu, H., Xu, X., Chen, X., Lu, T., Zhang, P., Jing, X. (2006) Preparation and antibacterial effects of PVA-PVP hydrogels containing silver nanoparticles. Journal of Applied Polymer Science, 103(1): 125-133