Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u prethodnih 30 dana:5
  • preuzimanja u prethodnih 30 dana:5
članak: 1 od 1  
Tehnika
2014, vol. 69, br. 6, str. 907-913
jezik rada: srpski
vrsta rada: stručni članak
doi:10.5937/tehnika1406907P


Regeneracija osteoporozom oštećenog koštanog tkiva sintetskim biomaterijalima
aUniverzitet u Nišu, Medicinski fakultet
bUniverzitet u Nišu, Medicinski fakultet, Stomatološka klinika
cPrivatna stomatološka ordinacija 'Kalodent', Niš

Projekat

Molekularno dizajniranje nanocestica kontrolisanih morfoloških i fizicko-hemijskih karakteristika i funkcionalnih materijala na njihovoj osnovi (MPNTR - 45004)
Preventivni, terapijski i eticki pristup preklinickim i klinickim istraživanjima gena i modulatora redoks celijske signalizacije u imunskom, inflamatornom i proliferativnom odgovoru celije (MPNTR - 41018)

Sažetak

U pojedinim defektima koštanog tkiva u oralnoj i maksilofacijalnoj hirurgiji, regeneracija je neophodna u značajnom obimu. Ovaj rad ima za cilj da prikaže različite mogućnosti u rešavanju problema oslabljene funkcije zarastanja koštanih defekata u vilici, kao i u drugim kostima, uz upotrebu sintetskih biomaterijala sa osobinama sličnim prirodnoj kosti. Novija otkrića u ovoj oblasti predstavljaju pokušaj stvaranja lokalnog sistema za dopremanje faktora rasta, zatim za direktnu dostavu matičnih ćelija, kao i sintezu skela za osteokondukciju, a takođe i upotrebu nanotehnologije u cilju sintetisanja kompozitnih biomaterijala, baziranih pre svega na hidroksiapatitu i polimerima koji bi imitirali nanokompozitnu arhitekturu prirodne kosti. Postoji takođe i tendencija stvaranja injektibilnih biomaterijala za olakšanu aplikaciju.

Ključne reči

osteoporoza; nanobiokomopoziti; sistemi za otpuštanje lekova; koštana regeneracija; tkivni inženjering

Reference

Ahlmann, E., Patzakis, M., Roidis, N., Shepherd, L., Holtom, P. (2002) Comparison of anterior and posterior iliac crest bone grafts in terms of harvest-site morbidity and functional outcomes. Journal of bone and joint surgery. American volume, 84-A(5): 716-20
Ajduković, Z., Najman, S., Dordević, L.J., Savić, V., Mihailović, D., Petrović, D., Ignjatović, N., Uskoković, D. (2005) Repair of bone tissue affected by osteoporosis with hydroxyapatite-poly-L-lactide (HAp-PLLA) with and without blood plasma. Journal of biomaterials applications, 20(2): 179-90
Ajduković, Z., Zorica, A., Ignjatović, N., Nenad, I., Petrović, D., Dragan, P., Uskoković, D., Dragan, U. (2007) Substitution of osteoporotic alveolar bone by biphasic calcium phosphate/poly-DL-lactide-co-glycolide biomaterials. Journal of biomaterials applications, 21(3): 317-28
Akkouch, A., Zhang, Z., Rouabhia, M. (2011) A novel collagen/hydroxyapatite/poly(lactide-co-ε-caprolactone) biodegradable and bioactive 3D porous scaffold for bone regeneration. Journal of Biomedical Materials Research Part A, 96A(4): 693-704
Alsousou, J., Thompson, M., Hulley, P., Noble, A., Willett, K. (2009) The biology of platelet-rich plasma and its application in trauma and orthopaedic surgery. Journal of bone and joint surgery. British volume, 91-B(8): 987-996
Bauer, T.W., Muschler, G.F. (2000) Bone graft materials. An overview of the basic science. Clinical orthopaedics and related research, (371): 10-27
Blokhuis, T.J. (2009) Formulations and delivery vehicles for bone morphogenetic proteins: latest advances and future directions. Injury, 40: S8-S11
Chen, F., Ma, Z., Dong, G., Wu, Z. (2009) Composite glycidyl methacrylated dextran (Dex-GMA)/gelatin nanoparticles for localized protein delivery. Acta pharmacologica Sinica, 30(4): 485-93
Chen, Q., Zhu, C., Thouas, G.A. (2012) Progress and challenges in biomaterials used for bone tissue engineering: bioactive glasses and elastomeric composites. Progress in Biomaterials, 1(1): 2
Cheunga, H.Y., Lau, K.T., Lu, T.P., Hu, D. (2007) Compos. Part B Eng, 38, 3, p. 291-300
Cho, T., Gerstenfeld, L.C., Einhorn, T.A. (2002) Differential temporal expression of members of the transforming growth factor beta superfamily during murine fracture healing. Journal of bone and mineral research, 17(3): 513-20
Chrischilles, E.A. (1991) A Model of Lifetime Osteoporosis Impact. Archives of Internal Medicine, 151(10): 2026
Dimitriou, R., Jones, E., McGonagle, D., Giannoudis, P.V. (2011) Bone regeneration: current concepts and future directions. BMC medicine, 9: 66
Einhorn, T.A. (1998) Clin. Orthop. Relat. Res, 355, S, p. 7- 21
Félix, L.R.P., Leeuwenburgh, S.C.G., Wolke, J.G.C., Jansen, J.A. (2011) Bone response to fast-degrading, injectable calcium phosphate cements containing PLGA microparticles. Biomaterials, 32(34): 8839-47
Ferguson, C., Alpern, E., Miclau, T., Helms, J.A. (1999) Does adult fracture repair recapitulate embryonic skeletal formation?. Mechanisms of development, 87(1-2): 57-66
Finkemeier, C.G. (2002) Bone-grafting and bone-graft substitutes. Journal of bone and joint surgery. American volume, 84-A(3): 454-64
Giannoudis, P.V., Dinopoulos, H., Tsiridis, E. (2005) Bone substitutes: An update. Injury, 36(3): S20-S27
Giannoudis, P.V., Einhorn, T.A. (2009) Bone morphogenetic proteins in musculoskeletal medicine. Injury, 40: S1-S3
Green, S.A., Jackson, J.M., Wall, D.M., Marinow, H., Ishkanian, J. (1992) Clin. Orthop. Relat. Res, 280, p. 136-142
Hoppe, A., Güldal, N.S., Boccaccini, A.R. (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials, 32(11): 2757-74
Ignjatovic, N., Ajdukovic, Z.R., Savic, V.P., Uskokovic, D.P. (2010) J Biomed. Mater. Res. B Appl. Biomater. B, 1, p. 108-117, 94
Ignjatovic, N., Ninkov, P., Ajdukovic, Z., Vasiljevic-Radovic, D., Uskokovic, D. (2007) Biphasic calcium phosphate coated with poly-d,l-lactide-co-glycolide biomaterial as a bone substitute. Journal of the European Ceramic Society, 27(2-3): 1589-1594
Ignjatović, N., Ninkov, P., Ajduković, Z., Konstantinović, V., Uskoković, D. (2005) Biphasic Calcium Phosphate/Poly-(DL-Lactide-Co-Glycolide) Biocomposite as Filler and Blocks for Reparation of Bone Tissue. Materials Science Forum, 494: 519-524
Ignjatović, N., Uskoković, V., Ajduković, Z., Uskoković, D. (2013) Multifunctional hydroxyapatite and poly(d,l-lactide-co-glycolide) nanoparticles for the local delivery of cholecalciferol. Materials Science and Engineering: C, 33(2): 943-950
Ignjatović, N., Ajduković, Z., Savić, V., Najman, S., Mihailović, D., Vasiljević, P., Stojanović, Z., Uskoković, V., Uskoković, D. (2012) Nanoparticles of cobalt-substituted hydroxyapatite in regeneration of mandibular osteoporotic bones. Journal of Materials Science: Materials in Medicine, 24(2): 343-354
Ignjatović, N.L., Ninkov, P., Sabetrasekh, R., Uskoković, D.P. (2009) A novel nano drug delivery system based on tigecycline-loaded calciumphosphate coated with poly-dl-lactide-co-glycolide. Journal of Materials Science: Materials in Medicine, 21(1): 231-239
Jackson, W.M., Aragon, A.B., Djouad, F., Song, Y., Koehler, S.M., Nesti, L.J., Tuan, R.S. (2009) Mesenchymal progenitor cells derived from traumatized human muscle. Journal of tissue engineering and regenerative medicine, 3(2): 129-38
Jones, E., English, A., Churchman, S., Kouroupis, D., Boxall, S., Kinsey, S., Giannoudis, P., Emery, P., McGonagle, D. (2010) Large-scale extraction and characterisation of CD271 + multipotential stromal cells (MSCs) from trabecular bone in health and osteoarthritis: Implications for bone regeneration strategies based on minimally-cultured MSCs. Arthritis and Rheumatism, 62, 7, p. 1944- 1954
Kang, Y.H., Kim, H.C., Shin, S.H., Kim, H.S., Kim, K.C., Lee, S.H. (2011) Tissue. Eng. Regen. Med, 8, 1, p. 23-31
Kim, K., Fisher, J.P. (2007) Nanoparticle technology in bone tissue engineering. Journal of drug targeting, 15(4): 241-52
Laschke, M.W., Witt, K., Pohlemann, T., Menger, M.D. (2007) Injectable nanocrystalline hydroxyapatite paste for bone substitution: in vivo analysis of biocompatibility and vascularization. Journal of biomedical materials research. Part B, Applied biomaterials, 82(2): 494-505
Leea, K.Y., Yukb, S.H. (2007) Prog. Polym. Sci, 32, 7, p. 669-697
Li, X., Liu, H., Niu, X., Yu, B., Fan, Y., Feng, Q., Cui, F., Watari, F. (2012) The use of carbon nanotubes to induce osteogenic differentiation of human adipose-derived MSCs in vitro and ectopic bone formation in vivo. Biomaterials, 33(19): 4818-27
Liao, H., Walboomers, X., Habraken, W.J.E.M., Zhang, Z., Li, Y., Grijpma, D.W., Mikos, A.G., Wolke, J.G.C., Jansen, J.A. (2011) Injectable calcium phosphate cement with PLGA, gelatin and PTMC microspheres in a rabbit femoral defect. Acta biomaterialia, 7(4): 1752-9
Matsumoto, T., Kawamoto, A., Kuroda, R., Ishikawa, M., Mifune, Y., Iwasaki, H., Miwa, M., Horii, M., Hayashi, S., Oyamada, A., Nishimura, H., Murasawa, S., Doita, M., Kurosaka, M., Asahara, T. (2006) Therapeutic potential of vasculogenesis and osteogenesis promoted by peripheral blood CD34-positive cells for functional bone healing. American journal of pathology, 169(4): 1440-57
Murugan, R., Ramakrishna, S. (2004) Bioresorbable composite bone paste using polysaccharide based nano hydroxyapatite. Biomaterials, 25(17): 3829-35
Nauth, A., Giannoudis, P.V., Einhorn, T.A., Hankenson, K.D., Friedlaender, G.E., Li, R., Schemitsch, E.H. (2010) Growth factors: beyond bone morphogenetic proteins. Journal of orthopaedic trauma, 24(9): 543-6
Ngiama, M., Liaob, S., Patilc, A.J., Chengb, Z., Chanb, C.K., Ramakrishnab, S. (2009) Bone, 45, 1, p. 4-16
Ostermann, P.A.W., Haase, N., Rübberdt, A., Wich, M., Ekkernkamp, A. (2002) Management of a long segmental defect at the proximal meta-diaphyseal junction of the tibia using a cylindrical titanium mesh cage. Journal of orthopaedic trauma, 16(8): 597-601
Pederson, W.C., Person, D.W. (2007) Long bone reconstruction with vascularized bone grafts. Orthopedic clinics of North America, 38(1): 23-35, v
Perán, M., García, M., Lopez-Ruiz, E., Jiménez, G., Marchal, J. (2013) How Can Nanotechnology Help to Repair the Body? Advances in Cardiac, Skin, Bone, Cartilage and Nerve Tissue Regeneration. Materials, 6(4): 1333-1359
Rezwan, K., Chen, Q.Z., Blaker, J.J., Boccaccini, A.R. (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 27(18): 3413-31
Schofer, M.D., Roessler, P.P., Schaefer, J., Theisen, C., Schlimme, S., Heverhagen, J.T., Voelker, M., Dersch, R., Agarwal, S., Fuchs-Winkelmann, S., Paletta, J.R.J. (2011) Electrospun PLLA nanofiber scaffolds and their use in combination with BMP-2 for reconstruction of bone defects. PloS one, 6(9): e25462
St, J.T.A., Vaccaro, A.R., Sah, A.P., Schaefer, M., Berta, S.C., Albert, T., Hilibrand, A. (2003) Physical and monetary costs associated with autogenous bone graft harvesting. American journal of orthopedics, 32(1): 18-23
Stevenson, J.C., Whitehead, M.I. (1982) Postmenopausal osteoporosis. BMJ, 285(6342): 585-588
Swetha, M., Sahithi, K., Moorthi, A., Srinivasan, N., Ramasamy, K., Selvamurugan, N. (2010) Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. International journal of biological macromolecules, 47(1): 1-4
Tampieri, A., Landi, E., Valentini, F., Sandri, M., D`Alessandro, T., Dediu, V., Marcacci, M. (2011) A conceptually new type of bio-hybrid scaffold for bone regeneration. Nanotechnology, 22(1): 015104
Tavakol, S., Azami, M., Khoshzaban, A., Kashani, I.R., Tavakol, B., Hoveizi, E., Sorkhabadi, S.M.R. (2013) J Nanopart. Res, 15, p. 1373
van de Watering, F.C.J., Laverman, P., Cuijpers, V.M., Gotthardt, M., Bronkhorst, E.M., Boerman, O.C., Jansen, J.A., van den Beucken, J.J.J.P. (2013) The biological performance of injectable calcium phosphate/PLGA cement in osteoporotic rats. Biomedical materials (Bristol, England), 8(3): 035012
Venkatesan, J., Kim, S. (2010) Chitosan composites for bone tissue engineering--an overview. Marine drugs, 8(8): 2252-66
von Wowern, N. (2001) General and oral aspects of osteoporosis: a review. Clinical oral investigations, 5(2): 71-82
Wennerberg, A., Fröjd, V., Olsson, M., Nannmark, U., Emanuelsson, L., Johansson, P., Josefsson, Y., Kangasniemi, I., Peltola, T., Tirri, T., Pänkäläinen, T., Thomsen, P. (2011) Nanoporous TiO(2) thin film on titanium oral implants for enhanced human soft tissue adhesion: a light and electron microscopy study. Clinical implant dentistry and related research, 13(3): 184-96
Younger, E.M., Chapman, M.W. (1989) Morbidity at bone graft donor sites. Journal of orthopaedic trauma, 3(3): 192-5
Zhang, Y., Venugopal, J.R., El-Turki, A., Ramakrishna, S., Su, B., Lim, C.T. (2008) Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials, 29(32): 4314-22
Zuk, P.A., Zhu, M., Mizuno, H., Huang, J., Futrell, J.W., Katz, A.J., Benhaim, P., Lorenz, H.P., Hedrick, M.H. (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue engineering, 7(2): 211-28