Metrika članka

  • citati u SCindeksu: [1]
  • citati u Google Scholaru:[=>]
  • posete u prethodnih 30 dana:2
  • preuzimanja u prethodnih 30 dana:2
članak: 1 od 1  
Vojnotehnički glasnik
2014, vol. 62, br. 4, str. 7-37
jezik rada: engleski
vrsta rada: izvorni naučni članak
doi:10.5937/vojtehg62-5170


Uporedna analiza fonema srpskog jezika - linearni i nelinearni modeli
General Staff of the Serbian Army, Department of Telecommunications and Information Technology (J-6), Centre for Applied Mathematics and Electronics, Belgrade

e-adresa: adanijela@ptt.rs

Sažetak

U radu je prikazana analiza karakteristika vokala i nevokala srpskog jezika. Vokale karakteriše kvaziperiodičnost i spektar snage signala sa dobro uočljivim formantima. Nevokale karakteriše kratkotrajna kvaziperiodičnost i mala snaga pobudnog signala. Vokali i nevokali modelovani su linearnim AR modelima i odgovarajućim nelinearnim modelima koji su generisani kao feed-forward neuronska mreža sa jednim skrivenim slojem. U procesu modelovanja korišćena je minimizacija srednje kvadratne greške sa propagacijom unazad, a kriterijum izbora optimalnog modela jeste zaustavljanje obučavanja, kada normalizovana srednja kvadratna test greška ili finalna greška predikcije dostignu minimalnu vrednost. LM metod korišćen je za proračun inverzne Hessianove matrice, a za pruning je upotrebljen Optimal Brain Surgeon. Prikazana su generalizaciona svojstva signala u vremenskom i frekvencijskom domenu, a kroskorelacionom analizom utvrđen je odnos signala na izlazima neurona skrivenog sloja.

Ključne reči

Reference

Akaike, H. (1969) Fitting autoregressive models for prediction. Annals of the Institute of Statistical Mathematics, 21(1): 243
Arsenijević, D., Milosavljević, M. (2002) Analysis of neural network models in Serbian speech consonants: Electronic review. Banja Luka: Faculty of electrical engineering
Bishop, C. (1995) Neural networks for pattern recognition. Oxford University press
Bojanić, M., Delić, V. (2009) Automatic emotion recognition in speech: Possibility and significance. Electronics, Vol. 13, No. 2, pp. 35-40
Collobert, R., Weston, J. (2008) A unified architecture for natural language processing. u: Proceedings of the 25th international conference on Machine learning - ICML '08, pp.160-167
Delić, V. (2000) Speech databases in Serbian language recorded with the AlfaNum project. pp. 29-32
Delić, V., Sečujski, M., Jakovljević, N., Janev, M., Obradović, R., Pekar, D. (2010) Speech technologies for Serbian and kindered South Slavic languages. u: Shabtai N. [ur.] Chapter 9 in the book, pp. 141-165
Hansen, L.K., Rasmusen, C.E. (1994) Pruning from adaptive regularization. Neural Computation, 6(6): 1223
Haykin, S.S. (1994) Neural networks: A comprehensive foundation. New York: Macmillan Publishing
Kashyap, R. (1980) Inconsistency of the AIC rule for estimating the order of autoregressive models. IEEE Transactions on Automatic Control, 25(5): 996-998
Khanagha, V., Yahia, H., Daoudi, K. (2011) Reconstruction of speech signals from their unpredictable points manifold. 7015, pp.1-7, Available at http://hal.inria.fr/docs/00/64/71/97/PDF/KHANAGHA_Reconstruction_of_speech _from_UPM.pdf, Retrieved on January 22, 2014
Kupusinac, A., Sečujski, M. (2009) Part of speech tagging based on combining Markov model and machine learning
Larsen, J. (1993) Design of Neural Networks. Lyngby: Electronic Institute, DTH, Ph.D. Thesis
le Cun, Y., Denker, J., Solla, S., Howard, R.E., Jackel, L.D. (1989) Optimal brain damage. u: Touretzky D.S. [ur.] Advances in Neural Information Processing Systems, San Francisco, CA, itd: Morgan Kaufmann, 2: 598-6
Little, M.A., McSharry, P.E., Moroz, I.M., Roberts, S.J. (2006) Testing the assumptions of linear prediction analysis in normal vowels. The Journal of the Acoustical Society of America, 119(1): 549
Ljung, L. (1987) System identification: Theory for the user. Prentice Hall Inc
Marković, M., Milosavljević, M., Kovačević, M., Veinović, M. (1999) Robust AR speech analysis based on MGLR algorithm and quadratic clasifier with sliding training set. pp. 2401-2408
Mesbahi, L., Jouvet, D., Bonneau, A., Fohr, D., Illina, I., Laprie, Y. (2011) Reliability of non-native speech automatic segmentation for prosodic feedback
Mikolov, T., Sutskever, I., Deodoras, A., Le, H.S., Kombrink, S., Cernocky, J. (2012) Subword language modelling with neural networks. Unpublished
Milić, M.R., Župac, G.Ž. (2012) Objektivni pristup određivanju težina kriterijuma. Vojnotehnički glasnik, vol. 60, br. 1, str. 39-56
Narendra, K.S., Parthasarathy, K. (1990) Identification and control of dynamical systems using neural networks. IEEE Transactions on Neural Networks, 1(1): 4-27
Norgaard, M. (2001) Neural Network Based System Identification Toolbox, Version 1. 2. u: Technical Report 97-E-851, Technical University of Denmark, Department of Automation Department of Mathematical Modelling
Pamučar, D.S., Đorović, B.D. (2012) Optimizing models for production and inventory control using a genetic algorithm. Vojnotehnički glasnik, vol. 60, br. 1, str. 14-38
Park, S., Choi, S. (2008) A constrained sequential EM algorithm for speech enhancement. Neural Networks, 21(9): 1401-1409
Pekar, D., Obradović, R., Delić, V., Krčo, S., Šenk, V. (2002) Connected words recognition. pp. 21-24
Pekar, D., Miskovic, D., Knezevic, D., Vujnovic, N., Secujski, M., Delic, V. (2010) Applications of Speech Technologies in Western Balkan Countries. u: Advances in Speech Recognition, pp.105-122
Protic, D., Milosavljevic, M. (2006) NNARX Model of Speech Signal Generating System: Test Error Subject to Modeling Mode Selection. u: 2006 25th International Conference on Microelectronics, pp.685-688
Protić, D., Milosavljević, M. (2005) Generalizaciona svojstva različitih klasa linearnih i nelinearnih modela govornog signala. Festivalski katalog, pp. 247-258
Riecke, L., Esposito, F., Bonte, M., Formisano, E. (2009) Hearing Illusory Sounds in Noise: The Timing of Sensory-Perceptual Transformations in Auditory Cortex. Neuron, 64(4): 550-561
Sainath, T.N., Kingsbury, B., Ramabhadran, B., Fousek, P., Novak, P., Mohamed, A. (2011) Making deep belief networks effective for large vocabulary continuous speech recognition. pp. 30-35
Sečujski, M., Pekar, D. (2014) Evaluacija različitih aspekata kvaliteta sintetizovanog govora. Available at http://www.savez-slijepih.hr/hr/kategorija/evaluacija-razlicitih-aspekata-kvalitetasintetizovanog- govora-452/. Retrieved on February 16, 2014
Shahin, A.J., Pitt, M.A. (2012) Alpha activity marking word boundaries mediates speech segmentation. European journal of neuroscience, 36(12): 3740-8
Silva, L., de Sa, M.J., Alexandre, L.A. (2008) Data classification with multilayer perceptrons using a generalized error function. Neural Networks, 21: 1302
Stanimirović, Lj., Ćirović, Z. (2008) Digitalna obrada govornog signala. Retrieved from www.viser.edu.rs/download/uploads/2371.pdf Accessed January 24, 2013
Svarer, C. (1995) Neural Networks for Signal Processing. Technical University of Denmark
Wu, W., Wang, J., Cheng, M., Li, Z. (2011) Convergence analysis of online gradient method for BP neural networks. Neural Networks, 24: 91-9