Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u prethodnih 30 dana:1
  • preuzimanja u prethodnih 30 dana:1
članak: 1 od 1  
Medicinski časopis
2012, vol. 46, br. 3, str. 121-125
jezik rada: engleski
vrsta rada: izvorni naučni članak
doi:10.5937/mckg46-2070


Morfologija neurona imunoreaktivnih na supstancu P u humanom korteksu donjeg parijetalnog režnja
aKatedra za anatomiju, Visoka medicinska škola strukovnih studija, Ćuprija
bUniverzitet u Beogradu, Medicinski fakultet, Institut za anatomiju
cVisoka medicinska škola strukovnih studija, Ćuprija
dUniverzitet u Kragujevcu, Medicinski fakultet
eFakultet medicinskih nauka, Katedra za anatomiju, Kragujevac

e-adresa: alexopoulos@dr.com

Sažetak

Cilj. Studija je sprovedena da bi se saznalo postoji li određena povezanost između oblika tela neurona i njihove imunoreaktivnosti na supstancu P u supramarginalnom i angularnoj vijuzi donjeg parijetalnog moždanog režnja. Metode. Supstanca P (SP) neuropeptid ispitivan je u ljudskom mozgu (3 muška i 4 ženska), bez ikakvih neuroloških i psihijatrijskih oboljenja, metodom immunohistohemije. Koristeći 'Olympus BT2 Camera Lucida' opremu, imunoreaktivni neuroni i vlakna su vizualizovani. Prikupljeni podaci su statistički analizirani upotrebom jednofaktorske analize varijanse sa nivoom verovatnoće p ≤ 0,05. Rezultati. Najveća tela neurona su otkrivena kod SP pozitivnih neurona: prosečni prečnici (± SD) bili su: duži prečnik 44,93 ± 15,69 mm, kraći prečnik 18,16 ± 3,77 mm. Jednofaktorska analiza varijanse pokazala je visoko značajne razlike između dužih osa immunopositivnih neurona (p = 0,002). Zaključak. Četvrtina otkrivenih SP neurona su lokalizovani u lamini II korteksa donjeg parijetalnog moždanog režnja. Sloj sa najmanjom gustinom lamina I (manje od jedne desetine svih imunoreaktivnih neurona).

Ključne reči

Reference

Aleksopoulos, H.G., Puškaš, L., Ilić, M.B., Jović, Ž.Ć., Milenković, M.M., Stojanović, Z.V. (2009) Histohemijska studija o holecistokininu i morfologiji imunopozitivnih neurona u korteksu humanog inferiornog parijetalnog lobula. Pons, 6(20): 1-5
Baffi, J., Görcs, T., Slowik, F., Horváth, M., Lekka, N., Pásztor, E., Palkovits, M. (1992) Neuropeptides in the human superior cervical ganglion. Brain research, 570(1-2): 272-8
Beinfeld, M.C., Dk, M., Jensen, rl rt E., Browstein, M.J. (1981) The distribution of cholecystokinin immuno-reactivity in the central nervous system of the rat as determined by radioimmunoassay. Brain res, (212): 51-57
Blaxton, T.A., Bookheimer, S.Y., Zeffiro, T.A., Figlozzi, C.M., Gaillard, W.D., Theodore, W.H. (1996) Functional mapping of human memory using PET: Comparisons of conceptual and perceptual tasks. Can J Exp Psychol, 50(1): 42-56
Eidelberg, D., Galaburda, A.M. (1984) Inferior parietal lobule. Divergent architectonic asymmetries in the human brain. Archives of neurology, 41(8): 843-52
Frederikse, M.E., Lu, A., Aylward, E., Barta, P., Pearlson, G. (1999) Sex differences in the inferior parietal lobule. Cereb Cortex, 9(8): 896-901
Fröscher, W., Maier, V., Fritschi, T. (1991) Periodic hypersomnia: Case report with biochemical and EEG findings. Sleep, 14(5): 460-3
Gabriel, S.M., Davidson, M., Haroutunian, V., i dr. (1996) Neuropeptide deficit in schizophrenia vs. alzheimer's disease cerebral cortex. Biol Psychiatry, 15: 82-91
Haug, H. (1987) Brain sizes, surfaces, and neuronal sizes of the cortex cerebri: A stereological investigation of man and his variability and a comparison with some mammals (primates, whales, marsupials, insectivores, and one elephant). American Journal of Anatomy, 180(2): 126-142
Heimer, L. (1995) Human brain and spinal cord: Functional neuroanatomy and dissection guide. New York: Springer-Verlag
Jones, E.G., Peters, A. (1984) Cerebral cortex. New York: Plenum Press, vol 1
Jones, E.G., Hendry, S.H.C. (1986) Co-localization of GABA and neuropeptides in neocortical neurons. Trends in Neurosciences, 9: 71-76
Kappers, C.U.A., Huber, G.C., Crosby, E.C. (1960) The comparative anatomy of the nervous system of vertebrates including man. New York: Hafner Publishing Company, 1559-617
Kryzhanovskii, G.N., Lutsenko, V.K., Khlebnikova, N.N. (1992) The effects of the leucine enkephalin on the development of a convulsive after discharge in the sensomotor cortex in rats. Bull exp biol med, 114: 343-5
Mauri, M.C., Rudelli, R., Vanni, S., Panza, G., Sicaro, A., Audisio, D., Sacerdote, P., Panerai, A.E. (1998) Cholecystokinin, beta-endorphin and vasoactive intestinal peptide in peripheral blood mononuclear cells of drug-naive schizophrenic patients treated with haloperidol compared to healthy controls. Psychiatry Res, 78(1-2): 45-50
Milovanovic,, Jevtic (2006) Physiological and physiotherapeutic basis of pain. Med Cas, 2: 54-8
Ochi, J., Ito, M., Okuno, T., Mikawa, H. (1988) Immunoreactive leucine-enkephalin content in brains of epileptic E1 mice. Epilepsia, 29(1): 91-6
O'Connor, W.T. (2001) Functional neuroanatomy of the ventral striopallidal GABA pathway. New sites of intervention in the treatment of schizophrenia. Journal of neuroscience methods, 109(1): 31-9
Okada, T., Tanaka, S., Nakai, T., Nishizawa, S., Inui, T., Sadato, N., Yonekura, Y., Konishi, J. (2000) Naming of animals and tools: A functional magnetic resonance imaging study of categorical differences in the human brain areas commonly used for naming visually presented objects. Neuroscience letters, 296(1): 33-6
Palkovits, M., Fischer, J. (1968) karyometric investigations. Budapest: Akadémiai Kiadó
Peters, A., Miller, M., Kimerer, L.M. (1983) Cholecystokinin-like immunoreactive neurons in rat cerebral cortex. Neuroscience, 8(3): 431-48
Quigley, B.J., Kowall, N.W. (1991) Substance P-like immunoreactive neurons are depleted in Alzheimer's disease cerebral cortex. Neuroscience, 41(1): 41-60
Seerogy, B., Fallon, H., Loughlin, E., Leslie, M. (1985) Few cortical cholesystokinin immunoreactive neurons have long projections. Exp Brain Res, 59, str. 533-42
Svensson, P., Minoshima, S., Beydoun, A., Morrow, T.J., Casey, K.L. (1997) Cerebral processing of acute skin and muscle pain in humans. Journal of neurophysiology, 78(1): 450-60
Tachikawa, H., Harada, S., Kawanishi, Y., Okubo, T., Shiraishi, H. (2000) Novel polymorphisms of the human cholecystokinin a receptor gene: An association analysis with schizophrenia. American Journal of Medical Genetics, 96(2): 141-145
Taquet, H., Javoy-Agid, F., Mauborgne, A., Benoliel, J.J., Agid, Y., Legrand, J.C., Tramu, G., Cesselin, F., Hamon, M. (1988) Biochemical mapping of cholecystokinin-, substance P-, [Met]enkephalin-, [Leu]enkephalin- and dynorphin A (1-8)-like immunoreactivities in the human cerebral cortex. Neuroscience, 27(3): 871-83
von Euler, U.S., Caddum, J.H. (1931) An unidentified depressor substance in certain tissue extracts. J Physiol, Lond, 72, str. 74-87
Wei, J., Hemmings, G.P. (1999) The CCK-A receptor gene possibly associated with auditory hallucinations in schizophrenia. Eur Psychiatry, 14(2): 67-70