Metrika članka

  • citati u SCindeksu: 0
  • citati u Google Scholaru:[=>]
  • posete u prethodnih 30 dana:5
  • preuzimanja u prethodnih 30 dana:0
članak: 1 od 1  
Medicinski časopis
2017, vol. 51, br. 4, str. 107-117
jezik rada: engleski
vrsta rada: izvorni naučni članak
doi:10.5937/mckg51-15877


Oligopeptidi izolovani iz mozga imaju neuroprotektivno dejstvo kod pacova sa sindromom sličnom Parkinsonizmu
Kharkiv National Medical University, Department of Biochemistry, Kharkiv, Ukraine

e-adresa: antontkachenko555@gmail.com

Sažetak

Cilj. Naše istraživanje je dizajnirano da prouči neuroprotektivno dejstvo PC-2 peptidnog kompleksa kod pacova sa eksperimentalnom Parkinsonovom bolešću. Metode. Da bi se procenila efikasnost kompleksa PC-2 peptida kod pacova sa eksperimentalnom Parkinsonovom bolešću, koncentracije 8-izoprostana, noradrenalina, dopamina, acetilholina, glutamata, GABA-e, aspartata, glicina, kao i aktivnost izocitratne dehidrogenaze i alfa-ketoglutaratne dehidrogenaze određeni su u homogenatima frontalnog režnja mozga. Rezultati. Tretman sa PC-2 peptidnim kompleksom dovodi do normalizacije koncentracija noradrenalina i acetilholina, povećanja koncentracija dopamina (međutim, nisu dosegli nivo kao kod pacova iz kontrolne grupe) 20. dana od početka terapije. Koncentracije ekscitatornih aminokiselina kod pacova sa eksperimentalnom Parkinsonovom bolešću povećali su se, dok su koncentracije inhibitornih aminokiselina u homogenatima frontalnog režnja smanjene. Proteinski kompleks PC-2 normalizovao je sadržaj proučavanih aminokiselina u 20. danu lečenja. Osim toga, sadržaj markera oksidativnog stresa povećan je kod homogenata frontalnog dela mozga kod pacova sa Parkinsonovom bolešću, što je rezultiralo smanjenjem aktivnosti mitohondrijalnih enzima i stvaranjem energije pri bazalno visokim koncentracijama glutamata. Normalizacija parametara energetskog metabolizma postignuta je 20. dana nakon operacije. Zaključak. Kompleks PC-2 peptida reguliše nivo biogenih amina i neurotransmiterskih aminokiselina i, kao rezultat toga, utiče na energetski metabolizam u eksperimentalnoj Parkinsonovoj bolesti.

Ključne reči

Parkinsonova bolest; peptidi; neurotransmiterske supstance

Reference

Anisimov, S.V. (2008) Cell therapy of Parkinson's disease: Transplantation of embryonic and adult tissue. Advancesin Gerontogy, 4,  575-592 , (in Russian)
Atack, C., Magnusson, T. (1978) A procedure for the isolation of noradrenaline(together with adrenaline), dopamine, 5-hydroxytryptamine and histamine from the same tissue sample using a single column of strongly acidic cation exchange resin. Acta Pharmacol Toxicol (Copenh), 42, 35-57
Bohnen, N.I., Albin, R.L. (2011) The cholinergic system and Parkinson disease. Behavioural Brain Research, 221(2): 564-573
Chai, C., Lim, K.L. (2013) Genetic insights into sporadic Parkinson's disease pathogenesis. Curr Genomics, 14, 486-501
Chao, Y.X., He, B.P., Tay, S.S.W. (2009) Mesenchymal stem cell transplantation attenuates blood brain barrier damage and neuroinflammation and protects dopaminergic neurons against MPTP toxicity in the substantia nigra in a model of Parkinson's disease. Journal of Neuroimmunology, 216(1-2): 39-50
Chun, S.Y., Soker, S., Jang, Y., Kwon, T.G., Yoo, E.S. (2016) Differentiation of Human Dental Pulp Stem Cells into Dopaminergic Neuron-like Cells in Vitro. Journal of Korean Medical Science, 31(2): 171
Davie, C. A. (2008) A review of Parkinson's disease. British Medical Bulletin, 86(1): 109-127
Dias, V., Junn, E., Mouradian, M.M. (2013) The role of oxidative stress in Parkinson's disease. J Parkins dis, 3, 461-491
Drozdov, N.S., Materanskaya, N.P. (1998) Guide for biological chemistry. Moscow: Higher school, in Russian
Drozdov, V.N., Trubycina, I.E., Lygkova, A.E., Lazebnik, L.B. (2011) The way of acetylcholine determination. RU Patent 2256920, in Russian
Fifkova, E., Marshall, G. (1982) Stereotaxicatlasofcat, rabbit and rat brain: Electrophysiological research methods. Foreign Lit, (Russian translation)
Guo, C., Sun, L., Chen, X., Zhang, D. (2013) Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res, 8,  2003-2014
Hirsch, L., Jette, N., Frolkis, A., Steeves, T., Pringsheim, T. (2016) The Incidence of Parkinson's Disease: A Systematic Review and Meta-Analysis. Neuroepidemiology, 46(4): 292-300
Hu, Q., Wang, G. (2016) Mitochondrial dysfunction in Parkinson's disease. Translational Neurodegeneration, 5, 14
Kim, J.H., Chang, W.S., Jung, H.H., Chang, J.W. (2015) Effect of Subthalamic Deep Brain Stimulation on Levodopa-Induced Dyskinesia in Parkinson's Disease. Yonsei Medical Journal, 56(5): 1316
Klein, C., Westenberger, A. (2012) Genetics of Parkinson's Disease. Cold Spring Harbor Perspectives in Medicine, 2(1): a008888-a008888
Konno, T., Siuda, J., Wszolek, Z.K. (2016) Genetics  of Parkinson's  disease: A review of SNCA and LRRK2. Wiad Lek, 69, 328-332
Kumar, H., Lim, H., More, S.V., Kim, B., Koppula, S., Kim, I.S., Choi, D. (2012) The Role of Free Radicals in the Aging Brain and Parkinson’s Disease: Convergence and Parallelism. International Journal of Molecular Sciences, 13(8): 10478-10504
Lim, S.A., Kang, U.J., Mcgeheed, S. (2014) Striatalcholinergic interneuron regulation and circuit effects. Front Synaptic Neurosci, 6, 22
Lin, M.K., Farrer, M.J. (2014) Genetics and genomics of Parkinson’s disease. Genome Medicine, 6(6): 48
Ma, Y., Peng, S., Dhawan, V., Eidelberg, D. (2011) Dopamine cell transplantation in Parkinson's disease: challenge and perspective. British Medical Bulletin, 100(1): 173-189
Marella, M., Seo, B.B., Yagi, T., Matsuno-Yagi, A. (2009) Parkinson’s disease and mitochondrial complex I: a perspective on the Ndi1 therapy. Journal of Bioenergetics and Biomembranes, 41(6): 493-497
Mattson, M.P. (2011) Pathogenesis of neurodegenerative disorders. Baltimore: Humana Press Contemporary Neuroscience
Mercanti, G., Bazzu, G., Giusti, P. (2012) A 6-Hydroxydopamine In Vivo Model of Parkinson’s Disease. Methods  Mol Biol , str. 355-364
Naila, A., Flint, S., Fletcher, G., Bremer, P., Meerdink, G. (2010) Control of Biogenic Amines in Food-Existing and Emerging Approaches. Journal of Food Science, 75(7): R139-R150
Oliveira, L.M., Tuppy, M., Moreira, T.S., Takakura, A.C. (2017) Role of the locus coeruleus catecholaminergic neurons in the chemosensory control of breathing in a Parkinson's disease model. Experimental Neurology, 293: 172-180
Prentice, H., Modi, J.P., Wu, J. (2015) Mechanisms of Neuronal Protection against Excitotoxicity, Endoplasmic Reticulum Stress, and Mitochondrial Dysfunction in Stroke and Neurodegenerative Diseases. Oxidative Medicine and Cellular Longevity, 2015: 1-7
Pringsheim, T., Jette, N., Frolkis, A., Steeves, T.D.L. (2014) The prevalence of Parkinson's disease: A systematic review and meta-analysis. Movement Disorders, 29(13): 1583-1590
Prohorova, M.I. (1982) Methods of biochemical investigation (lipid and energy metabolism). Leningrad University, in Russian
Qamhawi, Z., Towey, D., Shah, B., Pagano, G., Seibyl, J., Marek, K., Borghammer, P., Brooks, D.J., Pavese, N. (2015) Clinical correlates of raphe serotonergic dysfunction in early Parkinson’s disease. Brain, 138(10): 2964-2973
Ross, J., Olson, L., Coppotelli, G. (2015) Mitochondrial and Ubiquitin Proteasome System Dysfunction in Ageing and Disease: Two Sides of the Same Coin?. International Journal of Molecular Sciences, 16(8): 19458-19476
Siddiqui, I.J., Pervaiz, N., Abbasi, A.A. (2016) The Parkinson Disease gene SNCA: Evolutionary and structural insights with pathological implication. Scientific Reports, 6(1):
Subramaniam, S.R., Chesselet, M. (2013) Mitochondrial dysfunction and oxidative stress in Parkinson's disease. Progress in Neurobiology, 106-107: 17-32
Surmeier, D. J., Guzman, J.N., Sanchez-Padilla, J., Goldberg, J.A. (2010) What causes the death of dopaminergic neurons in Parkinson’s disease?. Prog Brain Res, str. 59-77