Metrika članka

  • citati u SCindeksu: 0
  • citati u Google Scholaru:[=>]
  • posete u prethodnih 30 dana:11
  • preuzimanja u prethodnih 30 dana:7
članak: 1 od 1  
Zaštita materijala
2014, vol. 55, br. 4, str. 351-361
jezik rada: engleski
vrsta rada: naučni članak
doi:10.5937/ZasMat1404351O


Aramidni kompoziti impregnisani sa različitim ojačanjima - nanovlakna, nanočestice i nanocevi
Univerzitet u Beogradu, Tehnološko-metalurški fakultet

Projekat

Razvoj opreme i procesa dobijanja polimernih kompozitnih materijala sa unapred definisanim funkcionalnim svojstvima (MPNTR - 34011)
Sinteza, razvoj tehnologija dobijanja i primena nanostrukturnih multifunkcionalnih materijala definisanih svojstava (MPNTR - 45019)

Sažetak

U ovom istraživanju su se elektrospinovana vlakna, nanočestice i nanocevi koristili kao ojačanja koja bi unapredila mehanička svojstva materijala za balističku zaštitu. Uzorci poliuretan/paramidnih multiaksijalnih lamina (Twaron i Kolon lamine) su impregnisani sa poli(vinil butiral)(PVB)/etanol rastvorom sa različitim sadržajem ojačanja. Radi poboljšanja mehaničkih, balističkih i impakt svojstava, modifikovala se površina lamina sa γ-aminopropiltrietoksisilanom (AMEO silan)/etanol rastvorom i koristile su se silika nanočestice modifikovane AMEO silanom. Ovaj rad je podeljen na tri dela istraživanja: proces elektrospininga, balističko testiranje paramidnih kompozita i impakt tester analiza Kolon kompozita. Mehanička svojstva svih kompozita su bila testirana pomoću dinamičko mehaničke analize (DMA).

Ključne reči

p-aramidni kompoziti; silika nanočestice; ugljenične nanocevi; AMEO silan; PVB/SiO2 nanovlakna; balističko testiranje; impakt testiranje

Reference

Aleksić, R., Živković, I. (2009) Dinamičko-mehanička svojstva balističkih kompozitnih materijala. Beograd: TMF
Belingardi, G., Cavatorta, M.P., Paolino, D.S. (2006) Repeated Impact Behaviour and Damage Progression of Glass Reinforced Plastics. u: Fracture of Nano and Engineering Materials and Structures, str. 1257-1258
Chircor, M., Dumitrache, R., Cosmin, D.L. (2010) The Impact behaviour of composite materials. u: Maritime and Naval Science and Engineering, 3rd International Conference, Proceedings, 45-50
de Morais, W.A., Monteiro, S.N., D’Almeida, J.R.M. (2005) Effect of the laminate thickness on the composite strength to repeated low energy impacts. Composite Structures, 70(2): 223-228
Decker, M.J., Halbach, C.J., Nam, C.H., Wagner, N.J., Wetzel, E.D. (2007) Stab resistance of shear thickening fluid (STF)-treated fabrics. Composites Science and Technology, 67(3-4): 565-578
Elder, D.J., Thomson, R.S., Nguyen, M.Q., Scott, M.L. (2004) Review of delamination predictive methods for low speed impact of composite laminates. Composite Structures, 66(1-4): 677-683
Garg, K., Bowlin, G.L. (2011) Electrospinning jets and nanofibrous structures. Biomicrofluids, 5, 391- 403
Karahan, M., Kuş, A., Eren, R. (2008) An investigation into ballistic performance and energy absorption capabilities of woven aramid fabrics. International Journal of Impact Engineering, 35(6): 499-510
Kwon, H., Cho, S., Leparoux, M., Kawasaki, A. (2012) Dual-nanoparticulate-reinforced aluminum matrix composite materials. Nanotechnology, 23(22): 225704
Lee, Y.S., Wetzel, E.D., Wagner, N.J. (2003) The ballistic impact characteristics of Kevlar® woven fabrics impregnated with a colloidal shear thickening fluid. Journal of Materials Science, 38(13): 2825-2833
Loos, M.R., Abetz, V., Schulte, K. (2010) Dissolution of MWCNTs by using polyoxadiazoles, and highly effective reinforcement of their composite films. Journal of Polymer Science Part A: Polymer Chemistry, 48(22): 5172-5179
Mahfuz, H., Clements, F., Rangari, V., Dhanak, V., Beamson, G. (2009) Enhanced stab resistance of armor composites with functionalized silica nanoparticles. Journal of Applied Physics, 105, 293-307
Morka, A., Jackowska, B. (2011) Ballistic resistance of the carbon nanotube fibres reinforced composites - Numerical study. Computational Materials Science, 50(4): 1244-1249
Mylvaganam, K., Zhang, L.C. (2007) Ballistic resistance capacity of carbon nanotubes. Nanotechnology, 18(47): 475701
Obradović, V., Kojović, A., Stojanović, D.B., Nikolić, N., Živković, I., Uskoković, P., Aleksić, R. (2011) The analysis of forming PVB-SiO2 nanocomposite fibers by the electrospinning process. Scientific Technical Review, vol. 61, br. 3-4, str. 34-38
Padaki, N.V., Alagirusamy, R., Deopura, B.L., Fangueiro, R. (2008) Low velocity impact behaviour of textile reinforced composites,. Indian Journal of Fibre and Textile Research, 33, 189-202
Parveen, S., Rana, S., Fangueiro, R. (2013) A Review on Nanomaterial Dispersion, Microstructure, and Mechanical Properties of Carbon Nanotube and Nanofiber Reinforced Cementitious Composites. Journal of Nanomaterials, 2013: 1-19
Rajkumar, G.R., Krishna, M., Narasimha, M.H.N., Sharma, S.C., Mahesh, V.K.R. (2011) Effect of low velocity repeated impacts on property degradation of aluminum-glass fiber laminates. International Journal of Engineering Science and Technology (IJEST), 3, 4131-4139
Reneker, D.H., Chun, I. (1996) Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology, 7(3): 216-223
Sanchez-Soto, M., Martinez, A.B., Santana, O.O., Gordillo, A. (2004) On the application of a damped model to the falling weight impact characterization of glass beads-polystyrene composites. Journal of Applied Polymer Science, 93(3): 1271-1284
Sevkat, E., Liaw, B., Delale, F., Raju, B.B. (2010) Effect of repeated impacts on the response of plain-woven hybrid composites. Composites Part B: Engineering, 41(5): 403-413
Shyr, T., Pan, Y. (2003) Impact resistance and damage characteristics of composite laminates. Composite Structures, 62(2): 193-203
Sill, T.J., von Recum, H.A. (2008) Electrospinning: applications in drug delivery and tissue engineering. Biomaterials, 29(13): 1989-2006
Stojanovic, D.B., Orlovic, A.M., Glisic, S.B., Markovic, S., Radmilovic, V.R., Uskokovic, P.S., Aleksic, R.R. (2010) Preparation of MEMO silane-coated SiO2 nanoparticles under high pressure of carbon dioxide and ethanol. Journal of supercritical fluids, vol. 52, br. 3, str. 276-284
Tomishko, M.M., Demicheva, O.V., Alekseev, A.M., Tomishko, A.G., Klinova, L.L., Fetisova, O.E. (2009) Multiwall carbon nanotubes and their applications. Russian Journal of General Chemistry, 79(9): 1982-1986
Torki, A.M., Stojanović, D.B., Živković, I.D., Marinković, A., Škapin, S.D., Uskoković, P.S., Aleksić, R.R. (2012) The viscoelastic properties of modified thermoplastic impregnated multiaxial aramid fabrics. Polymer Composites, 33(1): 158-168
Utracki, L.A. (2010) In rigid ballistic composites. Canada: NRC Publications Archive, 45
van der Schueren, L., de Schoenmaker, B., Kalaoglu, O.I., de Clerck, K. (2011) An alternative solvent system for the steady state electrospinning of polycaprolactone. European Polymer Journal, 47(6): 1256-1263
Zhang, C., Yuan, X., Wu, L., Han, Y., Sheng, J. (2005) Study on morphology of electrospun poly(vinyl alcohol) mats. European Polymer Journal, 41(3): 423-432