Metrika

  • citati u SCIndeksu: [1]
  • citati u CrossRef-u:[2]
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:7
  • preuzimanja u poslednjih 30 dana:5

Sadržaj

članak: 1 od 1  
2016, vol. 22, br. 2, str. 39-48
Evaluacija morfoloških osobina i mikronutrienata zrna kod populacija kukuruza
Institut za kukuruz 'Zemun polje', Beograd-Zemun

e-adresaavioleta@mrizp.rs
Projekat:
Poboljšanje svojstava kukuruza i soje molekularnim i konvencionalnim oplemenjivanjem (MPNTR - 31068)

Sažetak
U odnosu na druge žitarice, zrno kukuruza sadrži visok nivo karotenoida i tokoferola. Od svih karotenoida β-karoten ima najveću aktivnost i smatra se najznačajnim u biofortifikacijskim programima oplemenjivanja žitarica. Ovo istraživanje je imalo za cilj da utvrdi razlike u morfološkim svojstvima, sadržaju tokoferola (α-, β+γ-, δ-), β-karotena, luteina i zeaksantina kod lokalnih i introdukovanih populacija kukuruza iz banke gena Instituta za kukuruz 'ZemunPolje'. Sadržaj mikronutrienata je utvrđen primenom HPLC metode. Koeficijent varijacije za morfološka svojstva je bio manji od 10%, osim za prinos zrna po biljci (Cv=18,6%). Sadržaj α-tokoferola je bio u rasponu od 1,04-8,42 μg g-1 suve mase, a β-karotena od 0,26 to 7,95 μg g-1suve mase. δ-tokoferol je bio u značajnoj korelaciji sa brojem zrna u redu (r=0,700***), dok je β+γ-tokoferol bio u značajnoj negativnoj korelaciji sa visinom biljke i klipa(r=-0,601***; r=- 0,591**). Korelacije između morfoloških svojstava i α-tokoferola bile su slabe i nesignifikantne. Boja zrna je bila u značajnoj korelaciji sa sadržajem zeaksantina (r=0,590***) i β-karotena (r=0,398*). Za potrebe biofortifikacije 'pool' od 11 populacija sa povećanim sadržajem i β-karotena i α-tokoferola biće formiran na osnovu dobijenih rezultata.
Reference
Adom, K.K., Liu, R.H. (2002) Antioxidant activity of grains. J Agric Food Chem, 50(21): 6182-7
Bellon, M.R., van Etten, J. (2013) Climate change and on-farm conservation of crop landraces in centres of diversity. u: Jackson M., Ford-Lloyd B., Parry M.L. [ur.] Plant genetic resources and climate change, New York, NY: CABI Publishing
Combs, S.B., Combs, G.F. (1985) Varietal differences in the vitamin E content of corn. Journal of Agricultural and Food Chemistry, 33(5): 815-817
Drinić, M.S., Mesarović, J., Anđelković, V., Kovačević, D., Babić, V. (2016) Maize populations as a source of micronutrient improvement. u: VII International Scientific Agriculture Symposium Agrosym 2016, Jahorina, October 06. 09. 2016, Bosnia and Herzegovina, Book of Proceedings, 895-900
Galili, G., Galili, S., Lewinsohn, E., Tadmor, Y. (2002) Genetic, Molecular, and Genomic Approaches to Improve the Value of Plant Foods and Feeds. Critical Reviews in Plant Sciences, 21(3): 167-204
Gliszczyńska-Świgło, A., Sikorska, E., Khmelinskii, I., Sikorski, M. (2007) Tocopherol content in edible plant oils. Polish journal of food and nutritional sciences, (A), 157-161; 4; 57
Hallauer, A.R., Miranda, J.B. (1995) Quantitative genetics in maize breeding. Ames, IA, USA: Iowa State Univ. Press, 2nd ed
Harjes, C.E., Rocheford, T.R., Bai, L., Brutnell, T.P., Kandianis, C.B., Sowinski, S.G., Stapleton, A.E., Vallabhaneni, R., Williams, M., Wurtzel, E.T., Yan, J., Buckler, E.S. (2008) Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science, 319(5861): 330-3
Kuhnen, S., Lemos, P.M.M., Campestrini, L.H., Ogliari, J.B., Dias, P.F., Maraschin, M. (2009) Antiangiogenic properties of carotenoids: A potential role of maize as functional food. Journal of Functional Foods, 1(3): 284-290
Kurilich, A.C., Juvik, J.A. (1999) Quantification of carotenoid and tocopherol antioxidants in Zea mays. Journal of agricultural and food chemistry, 47(5): 1948-55
Ortizmonasterio, J., Palaciosrojas, N., Meng, E., Pixley, K., Trethowan, R., Pena, R. (2007) Enhancing the mineral and vitamin content of wheat and maize through plant breeding. Journal of Cereal Science, 46(3): 293-307
Pfeiffer, W.H., McClafferty, B. (2007) HarvestPlus: Breeding Crops for Better Nutrition. Crop Science, 47(Supplement_3): S-88
Pixley, K., Rojas, N.P., Babu, R., Mutale, R., Surles, R., Simpungwe, E. (2013) Biofortification of maize with provitamin A carotenoids. u: Tanumihardjo S.A. [ur.] Carotenoids and Human Health: Nutrition and Health, New York: Springer Science, 271-292
Rivera, S., Canela, R. (2012) Influence of sample processing on the analysis of carotenoids in maize. Molecules (Basel, Switzerland), 17(9): 11255-68
Rocheford, T.R., Wong, J.C., Egesel, C.O., Lambert, R.J. (2002) Enhancement of vitamin E levels in corn. J. Am. College Nutr, 21: 191S-198S
Sattler, S.E., Gilliland, L.U., Magallanes-Lundback, M., Pollard, M., DellaPenna, D. (2004) Vitamin E is essential for seed longevity and for preventing lipid peroxidation during germination. Plant cell, 16(6): 1419-32
Traber, M.G., Atkinson, J. (2007) Vitamin E, antioxidant and nothing more. Free Radical Biology and Medicine, 43(1): 4-15
Welch, R.M. (2002) Breeding strategies for biofortified staple plant foods to reduce micronutrient malnutrition globally. J Nutr, 132(3): 495S-499S
Wurtzel, E.T. (2004) Chapter five Genomics, genetics, and biochemistry of maize carotenoid biosynthesis. Recent Advances in Phytochemistry, : 85-110
 

O članku

jezik rada: engleski
vrsta rada: izvorni naučni članak
DOI: 10.5937/selsem1602039A
objavljen u SCIndeksu: 02.02.2017.
Creative Commons License 4.0

Povezani članci

Hrana i ishrana (2003)
Oksidativno-antioksidativni efekti i unos povrća i voća kod mladih
Biščević Azra

Hrana i ishrana (2013)
Nutritivni i funkcionalni potencijal heljde
Mandić Anamarija, i dr.

Hrana i ishrana (2016)
Značaj polifenola iz žitarica u ljudskoj ishrani
Golijan Jelena, i dr.

prikaži sve [23]