Metrika članka

  • citati u SCindeksu: [1]
  • citati u CrossRef-u:[4]
  • citati u Google Scholaru:[=>]
  • posete u prethodnih 30 dana:7
  • preuzimanja u prethodnih 30 dana:7
članak: 1 od 1  
Nauka, bezbednost, policija
2015, vol. 20, br. 3, str. 67-82
jezik rada: engleski
vrsta rada: izvorni naučni članak
doi:10.5937/NBP1503067J


Pregled rezultata teorijskih pristupa fononskom inženjeringu termodinamičkih osobina različitih kvantnih struktura
aPolicijska akademija
bUniverzitet u Novom Sadu, Prirodno-matematički fakultet, Departman za fiziku

e-adresa: stevo.jacimovski@kpa.edu.rs, jovan.setrajcic@df.un

Projekat

Dizajniranje i modelovanje specificnih osobina nanostrukturnih uzoraka (MPNTR - 171039)
Inoviranje forenzickih metoda i njihova primena (MPNTR - 34019)

Sažetak

Primena naostruktura zhteva poznavanje njihovih osnovnih fizičkih (mehaničkih, elektromagnetnih, optičkih, itd.) karakteristika. Termodinamičke osobine su povezane sa ponašanjem fononskog podsistema koji uvek postoji. Fononi su kolektivne mehaničke oscilacije molekula ili atoma kristalne rešetke i predstavljaju najvažniji sistem ekscitacija u ovim strukturama.Nezavisno od tipa kristalne rešetke termodinamika njenih podsistema (elektrona, eksitona, spinskih talasa itd.) je određena kada je odgovarajući podsistem u termodinamičkoj ravnoteži sa fononima. Uloga fonona u nanostrukturama je značajnija nego u tzv. balk strukturama, posebno što je u nanostrukturama (filmovi, superrešetke, žice, tačke) kretanje fonona ograničeno u nekoliko dimenzija. Zbog ograničenosti dimenzija kod nanostruktura se javljaju novi efekti kao što je dimenziono kvantovanje, konfiniranje fonona itd. Uticaj graničnih uslova na zakon disperzije fonona dovodi do promene karakteristika termodinamičkih i transportnih osobina. Dakle, menjanjem graničnih uslova se može uticati na toplotne i transportne osobine ovih struktura, što se danas popularno naziva fononski inženjering. U radu su analizirani i upoređivani toplotni kapaciteti i koficijenti toplotne provodnosti (kao merljive veličine) za razne strukture, kako na niskim tako i na visokim temperaturama, kao i posledice na njihovu praktičnu primenu.

Ključne reči

Reference

Adachi, M., Lockwood, D.J. (2006) Self-organized nanoscale materials. New York: Springer
Agarwal, R.P. (2000) Difference equations and inequalities, theory methods and applications. New York: Marcel Dekker, Inc
Balandin, A., Wang, K.L. (1998) Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well. Physical Review B, 58(3): 1544-1549
Balandin, A.A., Pokatilov, E.P., Nika, D.L. (2007) Phonon Engineering in Hetero- and Nanostructures. Journal of Nanoelectronics and Optoelectronics, 2(2): 140-170
Balandin, A.A., Nika, D.L. (2012) Phononics in low-dimensional materials. Materials Today, 15(6): 266-275
Budinski-Petković, L., Kozmidis-Luburić, U.F., Ćetković, M., Mašković, L.D., Stošić, B.S. (2000) Phonons in cylindric microchips. Nauka, bezbednost, policija, vol. 5, br. 1, str. 83-92
Bulen, A.J., O`hara, K.E., Cahill, D.G. (2001) Thermal conductivity of amorphous carbon thin films. http://xxx.lanl.gov./find/cond.mat, No-0008084
Cao, G. (2004) Nanostructures & nanomaterials: Synthesis, properties & applications. London: Imperial College Press
Cleland, A.N. (2003) Foundations of Nanomechanics. Berlin: Springer, ISBN 978-3-642-07821-7
Cottam, M.G., Tilley, D.R. (1989) Introduction to surface and superlattice excitations. Cambridge, itd: Cambridge University Press / CUP
Delerue, C., Lannoo, M. (2009) Nanostructures -- Theory and Modelling. Berlin: Springer
Fonoberov, V.A., Balandin, A.A. (2006) Giant Enhancement of the Carrier Mobility in Silicon Nanowires with Diamond Coating. Nano Letters, 6(11): 2442-2446
Huck, W.T.S., ur. (2005) Nanoscale assembly: Chemical techniques. New York: Springer
Jaćimovski, S.K., Šetrajčić, J.P., Zorić, V.M., Tošić, B.S., Sajfert, V.D., Ilić, D.I. (2007) Thermodynamics of mechanical oscillations in crystalline superlattices. International Journal of Modern Physics B, 21(06): 917-930
Jaćimovski, S.K., Šetrajčić, J.P., Jaćimovski, M.S., Stojanović, V.V. (2014) Phonon Contribution in Thermodynamics and Transport Properties of Ultrathin Ceramic Films. Acta Physica Polonica A, 126(3): 811-820
Kittel, C. (1963) Quantum Theory of Solids. New York: Wiley
Lazarev, B.S., Pantić, M.R., Stojković, M.S., Tošić, B.S., Šetrajčić, J.P. (2000) Thermodynamical properties of ultrathin layered structures. Journal of physics and chemistry of solids, vol. 61, br. 6, str. 931-936
Liu, W., Asheghi, M. (2006) Thermal Conductivity Measurements of Ultra-Thin Single Crystal Silicon Layers. Journal of Heat Transfer, 128(1): 75
Mahan, G.D. (2011) Condensed Matter in a Nutshell. Princeton: University Press
Manasreh, O. (2005) Semiconductor Heterojunctions and Nanostructures. New York: McGraw-Hill
Marsiglio, F., Carbotte, J.P. (2001) Electron-phonon superconductivity. No: 0106143, http://arxiv.org/find/cond-mat
Nika, D.L., Cocemasov, A.I., Isacova, C.I., Balandin, A.A., Fomin, V.M., Schmidt, O.G. (2012) Suppression of phonon heat conduction in cross-section-modulated nanowires. Physical Review B, 85(20)
Nika, D.L., Pokatilov, E.P., Balandin, A.A., Fomin, V.M., Rastelli, A., Schmidt, O.G. (2011) Reduction of lattice thermal conductivity in one-dimensional quantum-dot superlattices due to phonon filtering. Physical Review B, 84(16)
Nika, D.L., Zincenco, N.D., Pokatilov, E.P. (2009) Engineering of Thermal Fluxes in Phonon Mismatched Heterostructures. Journal of Nanoelectronics and Optoelectronics, 4(1): 180-185
Nika, D.L., Cocemasov, A.I., Balandin, A.A. (2014) Specific heat of twisted bilayer graphene: Engineering phonons by atomic plane rotations. Applied Physics Letters, 105(3): 031904
Nika, D.L., Pokatilov, E.P., Balandin, A.A. (2008) Phonon-engineered mobility enhancement in the acoustically mismatched silicon/diamond transistor channels. Applied Physics Letters, 93(17): 173111
Pokatilov, E.P., Nika, D.L., Balandin, A.A. (2005) Acoustic-Phonon Engineering in Coated Cylindrical Nanowires. Superlatt. Microstruct, 38, 168
Pokatilov, E.P., Nika, D.L., Balandin, A.A. (2005) Acoustic-phonon propagation in rectangular semiconductor nanowires with elastically dissimilar barriers. Physical Review B, 72(11)
Popov, D., Jaćimovski, S.K., Tošić, B.S., Šetrajčić, J.P. (2003) Kinetics of thin films mechanical oscillations. Physica A: Statistical Mechanics and its Applications, 317(1-2): 129-139
Sajfert, V., Tošić, B. (2010) The Research of Nanoscience Progress. Journal of Computational and Theoretical Nanoscience, 7(1): 15-84
Sajfert, V., Šetrajčić, J., Popov, D., Tošić, B. (2005) Difference equations in condensed matter physics and their application to exciton systems in thin molecular films. Physica A: Statistical Mechanics and its Applications, 353: 217-234
Sajfert, V., Šetrajčić, J.P., Jaćimovski, S., Tošić, B. (2005) Thermodynamic and kinetic properties of phonons in cylindrical quantum dots. Physica E: Low-dimensional Systems and Nanostructures, 25(4): 479-491
Santamore, D.H., Cross, M.C. (2001) The effect of surface roughness on universal thermal conductance. xxx.lanl.gov/find/cond.mat, No:0011473, 324-333
Saxena, A.K. (2010) High-Temperature Superconductors. Springer Series in Materials Science
Schaefer, H.E. (2010) Nanoscience - The Science ofthe Small in Physics, Engineering, Chemistry, Biology and Medicine. Berlin: Springer
Setrajcic, J.P., Mirjanic, D.Lj., Vucenovic, S.M., Ilic, D.I., Markoski, B.S., Jacimovski, S.K., Sajfert, V.D., Zoric, V.M. (2009) Phonon Contribution in Thermodynamics of Nano-Crystalline Films and Wires. Acta Physica Polonica A, vol. 115, br. 4, str. 778-782
Shahil, K.M.F., Balandin, A.A. (2012) Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials. Solid State Communications, 152(15): 1331-1340
Stojković, S.M., Šetrajčić, J.P. (1998) Superconductive characteristics of materials: Bulk samples and thin films. Nauka, bezbednost, policija, vol. 3, br. 1, str. 39-67
Stroscio, M.A., Dutta, M. (2004) Phonons in Nanostructures. Cambridge: University Press, ISBN 0-521-79279-7
Šetrajčić, J.P. (2010) Exact microtheoretical approach to calculation of optical properties of ultralow dimensional crystals. Arxiv, eprint arXiv: 1004.2387, 04
Šetrajčić, J.P., Sajfert, V.D., Mirjanić, D.Lj., Vučenović, S.M. (2004) Operator method for solving the difference equations. u: Proceedings 5th WSEAS International Conference on Applied Mathematics, 488/148, 1-4
Šetrajčić, J.P., Zorić, V.M., Delić, N.V., Mirjanić, D.Lj., Jaćimovski, S.K. (2011) Phonon participation in thermodynamics and superconductive properties of thin ceramic films. u: Tadashi M. [ur.] Thermodynamics, Vienna: InTech, Ch.15, pp.317-348
Šetrajčić, J.P., Jaćimovski, S.K., Raković, D.I., Ilić, D.I. (2003) Phonon Spectra in Crystalline Nanofilms. u: Mastorakis N.E., Kluev V.V., Koruga Đ [ur.] Electrical and Computer Engineering Series: Advances in Simulation, Systems Theory and Systems Engineering, Singapore: WSEAS Press
Šetrajčić, J.P., Ilić, D.I., Markoski, B., Šetrajčić, A.J., Vučenović, S.M., Mirjanić, D.Lj., Škipina, B., Pelemiš, S. (2009) Adaption and application of the Green function method to research on molecular ultrathin film optical properties. Physica Scripta, T135: 014043
Šetrajčić, J.P., Jaćimovski, S.K., Sajfert, V.D., Šetrajčić, I.J. (2014) Specific quantum mechanical solution of difference equation of hyperbolic type. Communications in Nonlinear Science and Numerical Simulation, 19(5): 1313-1328
Šetrajčić, J.P., Jaćimovski, S.K., Sajfert, V.D. (2015) Phonon contribution to heat capacitance of nanolayered crystalline structures. Modern Physics Letters B, 29(04): 1550008
Tringides, M.C., Jatochawski, M., Bauer, E. (2007) Quantum size effects in metallic nanostructures. Physics Today, pp. 50-54
Zhang, G., Zhang, H. (2011) Thermal conduction and rectification in few-layer graphene Y Junctions. Nanoscale, 3(11): 4604
Zheng, X.Y., Li, S.Z., Chen, M., Wang, K.L. (1996) Micro-electro-mechanical systems: Microscale thermal phenomena. u: Electronic Systems, Proceedings of ASME International Mechanical Engineering Congress and Exposition, New York, pp. 93-98
Ziman, J.M. (2001) Electrons and Phonons: The Theory of Transport Phenomena in Solids. New York: Oxford University Press