- citati u SCIndeksu: 0
- citati u CrossRef-u:0
- citati u Google Scholaru:[
]
- posete u poslednjih 30 dana:1
- preuzimanja u poslednjih 30 dana:1
|
|
|
L-ultrafilters, L-sets and Lc-property
(naslov ne postoji na srpskom)
Sažetak
(ne postoji na srpskom)
An L-filter base, L-filter, L-ultrafilter is a filter base, filter, ultra filter consisting exclusively of Lindelof sets. In this paper we consider L-filters (ultrafilters) and LC-property. A space X is LC - space if every Lindelof set in X has the compact closure in X. A locally compact space X is LC - space if and only if every L-ultrafilter on X converges. We also consider L-points, L-sets and LC-extensions.
|
|
|
Reference
|
2
|
Arkhangelskii, A.V., Ponomarev, V.I. (1974) Osnovy obshei topologii v zadachakh i uprazhneniyakh. Moskva: Nauka
|
1
|
Bourbaki, N. (1965) Topologie générale. u: Actualites Sci Ind., Paris: Hermann
|
29
|
Engelking, R. (1977) General topology. Warszawa: Polish Scientific Publisher
|
2
|
Keesling, J. (1970) Normality and properties related to compactness in hyperspaces. Proc. Amer. Math. Soc., 24, 760-766
|
3
|
Kelley, J.L. (1957) General topology. New York, itd: Van Nostrand
|
4
|
Michael, E. (1951) Topologies on spaces of subsets. Trans. Amer. Math. Soc., 71, 152-182
|
|
Milovančević, D. (1997) $\Sigma C$-ultrafilters, $P$-sets and HCC-property. Filomat, 11, 33-40
|
|
Milovančević, D. (2001) On the stone-čech compactification of -spaces. Filomat, br. 15, str. 135-140
|
1
|
Walker, R.C. (1974) The Stone-Čech compactification. Berlin, itd: Springer Verlag
|
|
|
|