- citati u SCIndeksu: 0
- citati u CrossRef-u:0
- citati u Google Scholaru:[
]
- posete u poslednjih 30 dana:2
- preuzimanja u poslednjih 30 dana:2
|
|
2008, br. 12-2, str. 35-43
|
Sequence with K1, K2, Kn, Kn+1 mutually tangent circles
(naslov ne postoji na srpskom)
Ključne reči: sequences of circles; arbelos; Pappus chain
Sažetak
(ne postoji na srpskom)
In this article is given the formula for radius of circle Kn, where in sequence {Kj}, four circles K1, K2, Kn, Kn+1, for all n ≥ 3, are mutually tangent. Radius rn is expressed in terms of radii r1, r2, r3.
|
|
|
Reference
|
|
Bankoff, L. (1981) How did Pappus do it. u: The mathematical Gardner, Pridle: Weber & Schmidt, str. 112-118
|
|
Bankoff, L. (1994) The Marvelous Arbelos. u: The lighter side of mathematics, Mathematical Association of America, str. 247-253
|
|
Dodge, C.W., Schoch, T., Woo, P.Y., Yiu, P. (1999) Those ubiquitous Archimedean circles. Mathematics Magazine of Mathematical Association of America, vol. 72, No 3, June, str. 202-213
|
|
Gaba, M.G. (1940) Amer. Math. Monthly, vol. 47, str. 19-24
|
|
Schoch, T. A dozen more arbelos twins. http://www.biola.edu/academics/undergrad/math/woopy/arbel2.htm
|
|
Thebault, V. (1940) Amer. Math. Monthly, vol. 47, str. 640
|
1
|
Weisstein, E.W. Fibonacci Q-Matrix from Mathworld: A Wolfram web resource. http//mathworld.wolfram.com/FibonacciQ-matrix.html
|
|
Woo, P. The Arbelos. http://www.biola.edu/academics/undergrad/math/woopy/arbelos.htm
|
|
|
|