Akcije

Mathematica Moravica
kako citirati ovaj članak
podeli ovaj članak

Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:2
  • preuzimanja u poslednjih 30 dana:2

Sadržaj

članak: 1 od 1  
2008, br. 12-2, str. 35-43
Sequence with K1, K2, Kn, Kn+1 mutually tangent circles
(naslov ne postoji na srpskom)
Univerzitet u Kragujevcu, Tehnički fakultet, Čačak

e-adresamilmath@tfc.kg.ac.yu
Ključne reči: sequences of circles; arbelos; Pappus chain
Sažetak
(ne postoji na srpskom)
In this article is given the formula for radius of circle Kn, where in sequence {Kj}, four circles K1, K2, Kn, Kn+1, for all n ≥ 3, are mutually tangent. Radius rn is expressed in terms of radii r1, r2, r3.
Reference
Bankoff, L. (1981) How did Pappus do it. u: The mathematical Gardner, Pridle: Weber & Schmidt, str. 112-118
Bankoff, L. (1994) The Marvelous Arbelos. u: The lighter side of mathematics, Mathematical Association of America, str. 247-253
Dodge, C.W., Schoch, T., Woo, P.Y., Yiu, P. (1999) Those ubiquitous Archimedean circles. Mathematics Magazine of Mathematical Association of America, vol. 72, No 3, June, str. 202-213
Gaba, M.G. (1940) Amer. Math. Monthly, vol. 47, str. 19-24
Schoch, T. A dozen more arbelos twins. http://www.biola.edu/academics/undergrad/math/woopy/arbel2.htm
Thebault, V. (1940) Amer. Math. Monthly, vol. 47, str. 640
Weisstein, E.W. Fibonacci Q-Matrix from Mathworld: A Wolfram web resource. http//mathworld.wolfram.com/FibonacciQ-matrix.html
Woo, P. The Arbelos. http://www.biola.edu/academics/undergrad/math/woopy/arbelos.htm
 

O članku

jezik rada: engleski
vrsta rada: izvorni naučni članak
DOI: 10.5937/MatMor0802035S
objavljen u SCIndeksu: 02.02.2009.

Povezani članci

Kragujevac J Science (2005)
The intriguing human preference for a ternary patterned reality
Pogliani Lionello, i dr.