- citati u SCIndeksu: 0
- citati u CrossRef-u:0
- citati u Google Scholaru:[
]
- posete u poslednjih 30 dana:1
- preuzimanja u poslednjih 30 dana:1
|
|
2009, vol. 13, br. 1, str. 77-94
|
New equivalents of the axiom of choice and consequences
(naslov ne postoji na srpskom)
Sažetak
(ne postoji na srpskom)
This paper continues the study of the Axiom of Choice by E. Zermelo [Neuer Beweis für die Möglichkeit einer Wohlordung, Math. Annalen, 65 (1908), 107-128; translated in van Heijenoort 1967, 183-198], and by M. Tasković [The axiom of choice, fixed point theorems, and inductive ordered sets, Proc. Amer. Math. Soc., 116 (1992), 897-904]. 2000 Mathematics Subject Classification. Primary: 47H10; Secondary: 54H25.
|
|
|
Reference
|
1
|
Abian, A. (1983) A fixed point theorem equivalent to the axiom of choice. Abstracts Amer. Math. Soc, br. 388, 4
|
2
|
Amann, H. (1977) Ordered structures and fixed points. Bochum: Ruhr Universität
|
1
|
Birkhoff, G. (1948) Lattice theory. , Colloq. Publ. vol. 25
|
|
Bourbaki, N. (1949) Sur le theoreme de Zorn. Archiv der Mathematik, 2(6): 434
|
4
|
Caristi, J. (1976) Fixed point theorems for mappings satisfying inwardness conditions. Trans. Amer. Math. Soc., 215, 241-251
|
|
Gödel, K. (1940) The consistency of the continuum hypothesis. Ann. of Math. Stud, vol. 3, Princeton Univ. Press, Princeton, NJ, str. 66
|
2
|
Howard, P., Rubin, Jean.E. (1998) Consequences of the axiom of choice, p. cm. u: Mathematical surveys and monographs, vol. 59
|
2
|
Jech, T.J. (1973) The axiom of choice. Amsterdam,New York: North-Holland Pub. Co.;American Elsevier Pub. Co
|
1
|
Klimeš, J. (1981) Fixed edge theorems for complete lattices. Arch. Math, 17, 227-234
|
|
Kuratowski, C. (1922) Une methode d'elimination des nombers transfinies raisonnements mathematiques. Fund. Math, 3, 76-108
|
|
Kurepa, Đ.R. (1952) Sur la relation d'inclusion et l'axiome de choix de Zermelo. Bull. Soc. Math. France, 80, 225-232
|
2
|
Moore, Gregory.H. (1982) Zermelo's axiom of choice: Its origins, development and influence. New York-Heidelberg-Berlin: Springer Verlag, vol. 8, 410 pages
|
|
Mostowski, A. (1948) On the principle of dependent choices. Fund. Math, 35, 127-130
|
1
|
Rubin, H. (1958) On a problem of Kurepa concerning the axiom of choice. Notices Amer. Math. Soc, 5, br. 378
|
1
|
Rubin, H., Rubin, J. (1960) Some new forms of the axiom of choice. Notices Amer. Math. Soc, 7, br. 380
|
2
|
Rubin, H., Rubin, J.E. (1970) Equivalents of the axiom of choice. Amsterdam: North-Holland
|
2
|
Rubin, H., Rubin, J.E. (1985) Equivalents of the axiom of choice. Amsterdam: North-Holland, II
|
|
Tarski, A. (1955) A lattice theoretical fixed-point theorem and its applications. Pacific Journal of Mathematics, vol. 5, br. 2, 285-309
|
2
|
Tasković, M.R. (1978) Banach's mappings of fixed points on spaces and ordered sets. Beograd, These
|
6
|
Tasković, M.R. (1988) Characterizations of inductive posets with applications. Proc. Amer. Math. Soc., 104, 2, 650-659
|
5
|
Tasković, M.R. (1986) On an equivalent of the axiom of choice and its applications. Mathematica Japonica, 31, 6, 979-991
|
5
|
Tasković, M.R. (1992) The axiom of choice, fixed point theorems, and inductive ordered sets. Proc. Amer. Math. Soc., 116, 4, 897-904
|
19
|
Tasković, M.R. (2005) Theory of transversal point, spaces and forks. u: Monographs of a new mathematical theory, Beograd, 1001-1022
|
|
Zermelo, E. (1907) Neuer Beweis fur die Moglichkeit einer Wohlordnung. Mathematische Annalen, 65(1): 107
|
4
|
Zorn, M. (1935) A remark on method in transfinite algebra. Bulletin of the American Mathematical Society, 41(10): 667
|
|
|
|