Akcije

Mathematica Moravica
kako citirati ovaj članak
podeli ovaj članak

Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:1
  • preuzimanja u poslednjih 30 dana:1

Sadržaj

članak: 1 od 1  
2009, vol. 13, br. 1, str. 77-94
New equivalents of the axiom of choice and consequences
(naslov ne postoji na srpskom)
Univerzitet u Beogradu, Matematički fakultet

e-adresaandreja@predrag.us
Sažetak
(ne postoji na srpskom)
This paper continues the study of the Axiom of Choice by E. Zermelo [Neuer Beweis für die Möglichkeit einer Wohlordung, Math. Annalen, 65 (1908), 107-128; translated in van Heijenoort 1967, 183-198], and by M. Tasković [The axiom of choice, fixed point theorems, and inductive ordered sets, Proc. Amer. Math. Soc., 116 (1992), 897-904]. 2000 Mathematics Subject Classification. Primary: 47H10; Secondary: 54H25.
Reference
Abian, A. (1983) A fixed point theorem equivalent to the axiom of choice. Abstracts Amer. Math. Soc, br. 388, 4
Amann, H. (1977) Ordered structures and fixed points. Bochum: Ruhr Universität
Birkhoff, G. (1948) Lattice theory. , Colloq. Publ. vol. 25
Bourbaki, N. (1949) Sur le theoreme de Zorn. Archiv der Mathematik, 2(6): 434
Caristi, J. (1976) Fixed point theorems for mappings satisfying inwardness conditions. Trans. Amer. Math. Soc., 215, 241-251
Gödel, K. (1940) The consistency of the continuum hypothesis. Ann. of Math. Stud, vol. 3, Princeton Univ. Press, Princeton, NJ, str. 66
Howard, P., Rubin, Jean.E. (1998) Consequences of the axiom of choice, p. cm. u: Mathematical surveys and monographs, vol. 59
Jech, T.J. (1973) The axiom of choice. Amsterdam,New York: North-Holland Pub. Co.;American Elsevier Pub. Co
Klimeš, J. (1981) Fixed edge theorems for complete lattices. Arch. Math, 17, 227-234
Kuratowski, C. (1922) Une methode d'elimination des nombers transfinies raisonnements mathematiques. Fund. Math, 3, 76-108
Kurepa, Đ.R. (1952) Sur la relation d'inclusion et l'axiome de choix de Zermelo. Bull. Soc. Math. France, 80, 225-232
Moore, Gregory.H. (1982) Zermelo's axiom of choice: Its origins, development and influence. New York-Heidelberg-Berlin: Springer Verlag, vol. 8, 410 pages
Mostowski, A. (1948) On the principle of dependent choices. Fund. Math, 35, 127-130
Rubin, H. (1958) On a problem of Kurepa concerning the axiom of choice. Notices Amer. Math. Soc, 5, br. 378
Rubin, H., Rubin, J. (1960) Some new forms of the axiom of choice. Notices Amer. Math. Soc, 7, br. 380
Rubin, H., Rubin, J.E. (1970) Equivalents of the axiom of choice. Amsterdam: North-Holland
Rubin, H., Rubin, J.E. (1985) Equivalents of the axiom of choice. Amsterdam: North-Holland, II
Tarski, A. (1955) A lattice theoretical fixed-point theorem and its applications. Pacific Journal of Mathematics, vol. 5, br. 2, 285-309
Tasković, M.R. (1978) Banach's mappings of fixed points on spaces and ordered sets. Beograd, These
Tasković, M.R. (1988) Characterizations of inductive posets with applications. Proc. Amer. Math. Soc., 104, 2, 650-659
Tasković, M.R. (1986) On an equivalent of the axiom of choice and its applications. Mathematica Japonica, 31, 6, 979-991
Tasković, M.R. (1992) The axiom of choice, fixed point theorems, and inductive ordered sets. Proc. Amer. Math. Soc., 116, 4, 897-904
Tasković, M.R. (2005) Theory of transversal point, spaces and forks. u: Monographs of a new mathematical theory, Beograd, 1001-1022
Zermelo, E. (1907) Neuer Beweis fur die Moglichkeit einer Wohlordnung. Mathematische Annalen, 65(1): 107
Zorn, M. (1935) A remark on method in transfinite algebra. Bulletin of the American Mathematical Society, 41(10): 667
 

O članku

jezik rada: engleski
vrsta rada: izvorni naučni članak
DOI: 10.5937/MatMor0901077T
objavljen u SCIndeksu: 23.02.2010.

Povezani članci

Mathematica Moravica (2004)
Axiom of choice: 100th next
Tasković Milan R.

Mathematica Moravica (2009)
Every set has at least three choice functions
Tasković Milan R.

Mathematica Moravica (2012)
The axiom of infinite choice
Tasković Milan R.

prikaži sve [29]