- citati u SCIndeksu: 0
- citati u CrossRef-u:[2]
- citati u Google Scholaru:[
]
- posete u poslednjih 30 dana:3
- preuzimanja u poslednjih 30 dana:3
|
|
2010, vol. 14, br. 1, str. 1-14
|
A class of polynomials in two variables
(naslov ne postoji na srpskom)
Sažetak
(ne postoji na srpskom)
In this paper, we present some families of polynomials in two variables. Some further results of these polynomials as generating function, Rodriguez formula and recurrence relations are discussed. We derive various families of bilinear and bilateral generating functions. We also give some particular cases reduced to Hermite-Hermite and Laguerre-Laguerre polynomials.
|
|
|
Reference
|
|
Alt, A., Erkus, E., Uzarslan, M.A. (2006) Families of linear generating functions for polynomials in two variables. Integral Transforms Spec. Funct., 17(5): 315
|
|
Alt, A., Aktas, R. (2007) A generating function and some recurrence relations for a family of polynomials. u: WSEAS International Conference on Applied Mathematics (XII), Proceedings, 118-121
|
|
Altin, A., Erku, E. (2006) On a multivariable extension of the Lagrange-Hermite polynomials. Integral Transforms and Special Functions, 17(4): 239-244
|
|
Erkus, E., Srivastava, H.M. (2006) A unified presentation of some families of multivariable polynomials. Integral Transforms Spec. Funct., 17(4): 267
|
|
Krall, H.L., Sheffer, I.M. (1967) Orthogonal polynomials in two variables. Ann. Mat. Pura Appl, 4, 325-376
|
7
|
Rainville, E.D. (1960) Special functions. London-New York, itd: Macmillan Publishing
|
8
|
Srivastava, H.M., Manocha, H.L. (1984) A treatise on generating functions. New York: Halsted Press
|
|
Suetin, P.K. (1988) Orthogonal polynomials in two variables. Moscow: Nauka
|
|
|
|