Akcije

Mathematica Moravica
kako citirati ovaj članak
podeli ovaj članak

Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:[2]
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:3
  • preuzimanja u poslednjih 30 dana:3

Sadržaj

članak: 1 od 1  
2010, vol. 14, br. 1, str. 1-14
A class of polynomials in two variables
(naslov ne postoji na srpskom)
Faculty of Science, Department of Mathematics, Ankara, Turkey

e-adresaaltin@science.ankara.edu.tr, raktas@science.ankara.edu.tr
Ključne reči: Rodriguez formula; recurrence relation; generating function; bilinear and bilateral generating function
Sažetak
(ne postoji na srpskom)
In this paper, we present some families of polynomials in two variables. Some further results of these polynomials as generating function, Rodriguez formula and recurrence relations are discussed. We derive various families of bilinear and bilateral generating functions. We also give some particular cases reduced to Hermite-Hermite and Laguerre-Laguerre polynomials.
Reference
Alt, A., Erkus, E., Uzarslan, M.A. (2006) Families of linear generating functions for polynomials in two variables. Integral Transforms Spec. Funct., 17(5): 315
Alt, A., Aktas, R. (2007) A generating function and some recurrence relations for a family of polynomials. u: WSEAS International Conference on Applied Mathematics (XII), Proceedings, 118-121
Altin, A., Erku, E. (2006) On a multivariable extension of the Lagrange-Hermite polynomials. Integral Transforms and Special Functions, 17(4): 239-244
Erkus, E., Srivastava, H.M. (2006) A unified presentation of some families of multivariable polynomials. Integral Transforms Spec. Funct., 17(4): 267
Krall, H.L., Sheffer, I.M. (1967) Orthogonal polynomials in two variables. Ann. Mat. Pura Appl, 4, 325-376
Rainville, E.D. (1960) Special functions. London-New York, itd: Macmillan Publishing
Srivastava, H.M., Manocha, H.L. (1984) A treatise on generating functions. New York: Halsted Press
Suetin, P.K. (1988) Orthogonal polynomials in two variables. Moscow: Nauka
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
DOI: 10.5937/MatMor1001001A
objavljen u SCIndeksu: 08.02.2011.