Akcije

Mathematica Moravica
kako citirati ovaj članak
podeli ovaj članak

Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:[1]
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:3
  • preuzimanja u poslednjih 30 dana:2

Sadržaj

članak: 1 od 1  
2011, vol. 15, br. 1, str. 25-29
Fixed points of occasionally weakly compatible maps satisfying general contractive conditions of integral type
(naslov ne postoji na srpskom)
Laboratoire de Mathématiques, Appliquées Université Badji Mokhtar B.P., Annaba, Algérie

e-adresab_hakima2000@yahoo.fr
Ključne reči: weakly compatible maps; occasionally weakly compatible maps; contractive condition; integral type; common fixed point theorems
Sažetak
(ne postoji na srpskom)
In this paper, two common fixed point theorems for four occasionally weakly compatible maps satisfying a contractive condition of integral type are obtained. Our results improve some results especially Theorem 2.1 of [3] and Theorem 1 of [1].
Reference
Aliouche, A. (2006) A common fixed point theorem for weakly compatible mappings in symmetric spaces satisfying a contractive condition of integral type. J Math. Anal. Appl, 322, 796-802
Al-Thagafi, M.A., Shahzad, N. (2008) Generalized I-nonexpansive selfmaps and invariant approximations. Acta Mathematica Sinica English Series, 24(5): 867
Altun, I., Turkoglu, D., Rhoades, B.E. (2007) Fixed points of weakly compatible mappings satisfying a general contractive condition of integral type. Fixed Point Theory And Applications, Article ID 17301, 9 pages
Jungck, G. (1986) Compatible mappings and common fixed points. Internat. J Math. Math. Sci., 9, 4, 771-779
Jungck, G. (1996) Common fixed points for noncontinuous nonself maps on nonmetric spaces. Far East J. Math. Sci., 4, 2, 199-215
Sessa, S. (1982) On a weak commutativity condition of mappings in fixed point considerations. Publications de l'Institut mathematique, 32(46), 149-153
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
DOI: 10.5937/MatMor1101025B
objavljen u SCIndeksu: 27.03.2012.