- citati u SCIndeksu: 0
- citati u CrossRef-u:[1]
- citati u Google Scholaru:[
]
- posete u poslednjih 30 dana:3
- preuzimanja u poslednjih 30 dana:3
|
|
2011, vol. 15, br. 2, str. 41-46
|
The Thy-angle and g-angle in a quasi-inner product space
(naslov ne postoji na srpskom)
Sažetak
(ne postoji na srpskom)
In this note we prove that in a so-called quasi-inner product spaces, introduced a new angle (Thy-angle) and the so-called gangle (previously defined) have many common characteristics. Important statements about parallelograms that apply to the Euclidean angles in the Euclidean space are also valid for the angles in a q.i.p. space (see Theorem 1).
|
|
|
Reference
|
1
|
Miličić, P.M. (1973) Sur le produit scalaire généralisé. Mat. Vesnik, (25),10, 325-329
|
|
Miličić, P.M. (1998) On the quasi-inne product spaces. Matematicki Bilten, 22, XLVIII, 19-30
|
1
|
Miličić, P.M. (1993) Sur le $g$-angle dans un espace norm\'e. Matematički vesnik, 45, 4, 43-48
|
3
|
Miličić, P.M. (1998) A generalization of the parallelogram equality in normed spaces. Journal of Mathematics of Kyoto University, 38, 1, 71-75
|
|
Singer, I. (1957) Unghiuri Abstracte si Functii Trigonometrice in Spatii Banach. Buliten Stintefic, 9, str. 29-42, Sectia de Stiinte Matematice si Fisice, Academia Republicii Populare Romine
|
|
Thürey, V. Angles and polar cordinates in real normed spaces. arXiv:0902. 2731v2
|
|
|
|