|
Reference
|
3
|
Agarwal, R.P., o'Regan D., Sahu, D.R. (2007) Iterative construction of fixed points of nearly asymptotically nonexpansive mappings. J. Nonlinear Convex Anal., 8, 61-79
|
|
Bridson, M.R., Haefliger, A. (1999) Metric spaces of non-positive curvature. u: Grundlehren der Mathematischen Wissenschaften, Berlin, Germany: Springer, Vol. 319
|
|
Brown, K.S. (1989) Buildings. New York, NY, USA: Springer
|
1
|
Bruck, R., Kuczumow, T., Reich, S. (1993) Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform Opial property. Colloquium Mathematicum, 65(2): 169-179
|
|
Bruhat, F., Tits, J. (1972) Groupes Réductifs Sur Un Corps Local. Publications mathématiques de l'IHÉS, 41(1): 5-251
|
|
Dhompongsa, S., Panyanak, B. (2008) On 4-convergence theorem in CAT(0) spaces. Comput. Math. Appl., 56(10); 2572-2579
|
1
|
Diaz, J.B., Metcalf, F.T. (1967) On the structure of the set of subsequential limit points of successive approximations. Bulletin of the American Mathematical Society, 73(4): 516-520
|
3
|
Fukhar-ud-din, H., Khan, S.H. (2007) Convergence of iterates with errors of asymptotically quasi-nonexpansive mappings and applications. Journal of Mathematical Analysis and Applications, 328(2): 821-829
|
12
|
Goebel, K., Kirk, W.A. (1972) A fixed point theorem for asymptotically nonexpansive mappings. Proceedings of the American Mathematical Society, 35(1): 171-171
|
|
Goebel, K., Reich, S. (1984) Uniform convexity, hyperbolic geometry, and nonexpansive mappings. u: Monographs and Textbooks in Pure and Applied Mathematics, New York, NY: Marcel Dekker Inc. USA, Vol. 83
|
|
Imnang, S., Suantai, S. (2009) Common Fixed Points of Multistep Noor Iterations with Errors for a Finite Family of Generalized Asymptotically Quasi-Nonexpansive Mappings. Abstract and Applied Analysis, 2009: 1-14
|
1
|
Khamsi, M.A., Kirk, W.A. (2001) An introduction to metric spaces and fixed point theory. John Wiley & Sons
|
|
Khan, A.R., Khamsi, M.A., Fukhar-ud-din, H. (2011) Strong convergence of a general iteration scheme in spaces. Nonlinear Analysis: Theory, Methods & Applications, 74(3): 783-791
|
|
Khan, S.H., Abbas, M. (2011) Strong and 4-convergence of some iterative schemes in CAT(0) spaces. Comput. Math. Appl, Vol. 61(1), 109-116
|
1
|
Kirk, W.A. (2003) Geodesic geometry and fixed point theory. u: Seminar of Mathematical Analysis (Malaga/Seville, 2002/2003), University of Seville Secretary of Publications, Seville, Spain, Vol. 64 of Coleccion Abierta, 195-225
|
|
Kirk, W. (2004) Fixed point theorems in spaces and -trees. Fixed Point Theory and Applications, 2004(4): 738084
|
|
Niwongsa, Y., Panyanak, B. (2010) Noor iterations for asymptotically nonexpansive mappings in CAT(0) spaces. Int. J. Math. Anal, Vol. 4(13), 645-656
|
2
|
Qihou, L. (2001) Iterative Sequences for Asymptotically Quasi-nonexpansive Mappings. Journal of Mathematical Analysis and Applications, 259(1): 1-7
|
1
|
Qihou, L. (2001) Iterative Sequences for Asymptotically Quasi-nonexpansive Mappings with Error Member. Journal of Mathematical Analysis and Applications, 259(1): 18-24
|
|
Şahin, A., Başarır, M. (2013) On the strong convergence of a modified S-iteration process for asymptotically quasi-nonexpansive mappings in a CAT(0) space. Fixed Point Theory and Applications, 2013(1): 12
|
1
|
Sahu, D.R., Jung, J.S. (2003) Fixed-point iteration processes for non-Lipschitzian mappings of asymptotically quasi-nonexpansive type. International Journal of Mathematics and Mathematical Sciences, 2003(33): 2075-2081
|
1
|
Saluja, G.S. (2007) Strong convergence theorem for two asymptotically quasi-nonexpansive mappings with errors in Banach space. Tamkang J. Math, 38(1), 85-92
|
7
|
Schu, J. (1991) Weak and strong convergence to fixed points of asymptotically nonexpansive mappings. Bulletin of the Australian Mathematical Society, 43(01): 153
|
3
|
Senter, H.F., Dotson, W.G. (1974) Approximating fixed points of nonexpansive mappings. Proceedings of the American Mathematical Society, 44(2): 375-375
|
2
|
Shahzad, N., Udomene, A. (2006) Approximating common fixed points of two asymptotically quasi-nonexpansive mappings in Banach spaces. Fixed Point Theory and Applications, 2006: 1-10
|
9
|
Tan, K.K., Xu, H.K. (1993) Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process. Journal of Mathematical Analysis and Applications, 178(2): 301-308
|
|
Tan, K., Xu, H.K. (1994) Fixed point iteration processes for asymptotically nonexpansive mappings. Proceedings of the American Mathematical Society, 122(3): 733-733
|
|
|
|