- citati u SCIndeksu: 0
- citati u CrossRef-u:0
- citati u Google Scholaru:[
]
- posete u poslednjih 30 dana:5
- preuzimanja u poslednjih 30 dana:4
|
|
2015, vol. 19, br. 1, str. 81-85
|
On the theorem of wan for K-quasiconformal hyperbolic harmonic self mappings of the unit disk
(naslov ne postoji na srpskom)
Ključne reči: hyperbolic metric; harmonic mappings; quasiconformal mappings
Sažetak
(ne postoji na srpskom)
We give a new glance to the theorem of Wan (Theorem 1.1) which is related to the hyperbolic bi-Lipschicity of the K-quasiconformal, K ≥ 1, hyperbolic harmonic mappings of the unit disk D onto itself. Especially, if f is such a mapping and f(0) = 0, we obtained that the following double inequality is valid 2│z│=(K + 1) ≤ │f(z)│ ≤ √ K│z│, whenever z _ D.
|
|
|
Reference
|
|
Ahlfors, L. (1973) Conformal invariants. McGraw-Hill Book Company
|
|
Ahlfors, L. (1966) Lectures on quasiconformal mappings. u: Van Nostrand Mathematical Studies, D. Van Nostrand
|
|
Kneževic, M. (2014) Kvazikonformna i harmonijska preslikavanja, kvazi-izometrije i krivina. Beograd: Univerzitet u Beogradu-Matematicki fakultet, Doktorska disertacija
|
|
Knežević, M., Mateljević, M. (2007) On the quasi-isometries of harmonic quasiconformal mappings. Journal of Mathematical Analysis and Applications, 334(1): 404-413
|
|
Knežević, M. (2013) Some Properties of Harmonic Quasi-Conformal Mappings. u: Dobrev, Vladimir [ur.] Lie Theory and Its Applications in Physics, Tokyo: Springer Nature America, Inc, str. 531-539
|
1
|
Lehto, O., Virtanen, K.I. (1973) Quasiconformal Mappings in the Plane. Berlin, Heidelberg: Springer Nature America, Inc
|
|
Mateljevic, M. (2012) Topics in conformal, quasiconformal and harmonic maps. Beograd: Zavod za udžbenike, ISBN 978-86-17-17961-6
|
1
|
Mateljević, M. (1992) Note on Schwarz lemma, curvature and distance. Zbornik radova Prirodno-matematičkog fakulteta u Kragujevcu, 13, 25-29
|
|
Mateljević, M. (2012) Quasiconformality of harmonic mappings between Jordan domains. Filomat, vol. 26, br. 3, str. 479-510
|
|
Pavlovic, M. (2002) Boundary correspondence under harmonic quasi-conformal homeomorfisms of the unit disk. Ann. Acad. Sci. Fenn. Math, 27, pp. 365-372
|
2
|
Rudin, W. (1966) Real and complex analysis. McGraw-Hill
|
|
Wan, T.Y. (1992) Constant mean curvature surface, harmonic maps, and universal Teichmüller space. Journal of Differential Geometry, 35(3): 643-657
|
|
|
|