Metrika članka

  • citati u SCindeksu: 0
  • citati u Google Scholaru:[=>]
  • posete u prethodnih 30 dana:0
  • preuzimanja u prethodnih 30 dana:0
članak: 1 od 1  
Mathematica Moravica
2015, vol. 19, br. 2, str. 19-33
jezik rada: engleski
vrsta rada: neklasifikovan
doi:10.5937/MatMor1502019I


On a general class of q-rational type operators
(naslov ne postoji na srpskom)
Department of Mathematics, Faculty of Sciences, Gazi University, Ankara, Turkey

e-adresa: nispir@gazi.edu.tr

Sažetak

(ne postoji na srpskom)
In this study, we define a general class of rational type operators based on q-calculus and investigate the weighted approximation properties of these operators by using A-statistical convergence. We also estimate the rates of A-statistical convergence of these operators by modulus of continuity and Petree's K-functional. The operators to be introduced, include some well known q-operators so our results are true in a large spectrum of these operators.

Ključne reči

q-calculus; rational type operators; A-statistical convergence; weighted spaces; linear positive operators

Reference

Naknadno pridodat članak: provera, normiranje i linkovanje referenci u toku.
A. Aral, A generalization of Szasz-Mirakyan operators based on q-integers, Math. Comput. Modelling. Vol. 47 (9-10),(2008), pp.1052-1062 .
A. Aral,V. Gupta, On q-Baskakov type operators, Demonstratio Math., Vol. 42, No. 1, (2009),pp.109-122.
K. Balazs, Approximation by Bernstein Type Rational Functions, Acta Mathematica Academiae Scientiarum Hungaricae Tomus,Vol. 26,No. 1-2, (1975),pp. 123-134.
K. Balázs, J. Szabados, Approximation by Bernstein type rational function II, Acta Math. Acad. Sci. Hungar,Vol. 40,No. 3-4 ,(1982) pp.331-337.
O. Dogru, On statistical approximation properties of Stancu type bivariate generalization of q-Balazs-Szabados operators, Proceedings of the Int. Conference on Numerical Analysis and Approximation Theory ,2006, Cluj-Napoca Romania,pp. 179-194.
O. Duman, C. Orhan, Statistical approximation by positive linear operators, Stud. Math., Vol. 161, (2006),pp. 187-197.
T. Ernst, The History of q-Calculus and a New Method U.U.D.M. Report 2000, Department of Mathematics, Uppsala University, Uppsala, 2000, p. 16.
H. Fast, Sur la convergence statistique, Colloq. Math.,Vol. 2, (1951),pp.241-244.
A. Fridy and H.L. Miller, A matrix characterization of statistical convergence, Analysis, Vol. 11,(1991),pp. 59-66 .
Gadziev, A.D., The convergence problem for a sequence of positive linear operators on bounded sets and theorems analogous to that of P. P. Korovkin, Soviet Math. Dokl. , Vol. 15, No. 5, (1974).
A.D. Gadziev, On P.P. Korovkin type theorems, Zametki. Vol. 20, (in Russian), (1976),pp. 781-786 .
A.D. Gadjiev and C. Orhan, Some Approximation theorems via statistical convergence, Rocky Mountain J. Math., Vol. 32,No. 1, (2002),pp.129-138 .
V. Gupta and N. Ispir, On the Bezier variant of the generalized Kantorovich type Balazs operators, Appl. Math. Letters,Vol. 18 , (2005),pp.1053-1061.
V. Gupta and N. Ispir, On the Kantorovich variant of generalized Bernstein type rational functions, Demons. Math.,Vol. 39, No. 1, (2006), pp. 117-130.
V. Gupta and C. Radu, Statistical approximation properties of q-Baskokov- Kantorovich operators, Cent. Eur. J. Math., Vol. 7,No. 4 (2009),pp. 809-818.
N. Ispir and C. Atakut, Approximation by generalized Balazs type rational functions, Int. J. Comput. Numer. Anal. Appl.,Vol. 4,No. 3, (2003), pp.297-316.
Ispir N. and Gupta V., A-statistical approximation by the generalized Kantorovich- Bernstein type rational operators,Southeast Asian Bull. Math.,Vol. 32,No. 1 (2008),pp. 87-97.
N. Ispir, Rate of convergence of generalized rational type Baskakov operators, Math.Comput. Modelling, Vol. 46, (2007),pp. 625-631.
E. Kolk, Statistically convergent sequences in normed spaces, Reports of convergence, Methods of algebra and analysis, Tartu,(1998), pp.63-66 .
N. I. Mahmudov, Approximation properties of complex q-Szasz-Mirakjan operators in compact disks, Comput. Math. Appl., (2010), pp.1784-1791.
Orkcu, M, Dogru, O., Weighted statistical approximation by Kantorovich type q- Szasz-Mirakjan operators, Appl. Math. Comput., Vol. 217,No. 20, (2011),pp. 7913- 7919.