Akcije

Mathematica Moravica
kako citirati ovaj članak
podeli ovaj članak

Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:2
  • preuzimanja u poslednjih 30 dana:2

Sadržaj

članak: 1 od 1  
2015, vol. 19, br. 2, str. 75-87
On a new subclass of harmonic univalent functions defined by multiplier transformation
(naslov ne postoji na srpskom)
Department of Mathematics, UIET, C.S.J.M. University, Kanpur, India

e-adresasaurabhjcb@rediffmail.com
Sažetak
(ne postoji na srpskom)
The purpose of the present paper is to introduce a new subclass of harmonic univalent functions by using Multiplier transformation. Coefficient estimates, distortion bounds, extreme points, convolution condition and convex combination for functions belonging to this class are determined. The results obtained for the class reduce to the corresponding several known results are briefly indicated.
Reference
Ahuja, O.P. (2005) Planar harmonic univalent and related mappings. J. Inequal. Pure Appl. Math, 6 (4); 1-18; 122
Cho, N.E., Srivastava, H.M. (2003) Argument estimates of certain analytic functions defined by a class of multiplier transformations. Math. Comput. Modeling, 37, 39-49
Cho, N.E., Kim, T.H. (2003) Multiplier transformations and strongly close-to-convex functions. Bull. Korean Math. Soc, 40, 399-410
Clunie, J., Sheil-Small, T. (1984) Harmonic univalent functions. Ann. Acad. Sci. Fenn. Ser. A I Math., 9: 3
Dixit, K.K. (2010) Saurabh Porwal, A subclass of harmonic univalent functions with positive coefficients. Tamkang J. Math., 41(3); 261-269
Dixit, K.K., Vikas, C. (2008) On subclass of univalent functions with positive coefficients. Aligarh Bull. Math, 27(2); 87-93
Dixt, K.K. (2013) Saurabh Porwal, Ankit Dixit, A new subclass of univalent functions with positive coefficients. Bessel J. Math., 3(2); 125-135
Duren, P. (2004) Harmonic mappings in the plane. Camb. Univ. Press
Jahangiri, J.M., Murugusundaramoorthy, G., Vijaya, K. (2002) Salagean-type harmonic univalent functions. Southwest J. Pure Appl. Math., 77-82; 2
Pathak, A., Porwal, S., Agarwal, R., Misra, R. (2012) A subclass of harmonic univalent functions with positive coefficients associated with fractional calculus operator. Journal of Nonlinear Analysis and Application, 2012: 1-11
Porwal, S., Aouf, M.K. (2013) On a new subclass of harmonic univalent functions defined by fractional calculus operator. J. Frac. Calc. Appl, 4, No. 10, 1-12
Porwal, S., Dixit, K.K. (2013) New Subclasses of Harmonic Starlike and Convex Functions. Kyungpook mathematical journal, 53(3): 467-478
Porwal, S., Dixit, K.K. (2010) An application of certain convolution operator involving hypergeometric functions. J Raj. Acad. Phy. Sci., 9(2); 173-186
Porwal, S., Dixit, K.K., Kumar, V., Dixit, P. (2011) On a subclass of analytic functions defined by convolution. General Mathematics, 19(3), 57-65
Porwal, S. (2009) Study of certain classes related to analytic and harmonic univalent functions. Kanpur, India: CSJM University, Ph.D. Thesis
Porwal, S., Dixit, K.K. (2012) On a new subclass of Salagean-type harmonic univalent functions. Indian J. Math., 54(2); 199-210
Salagean, G.S. (1983) Subclasses of univalent functions. Lecture Notes in Math, vol. 1013, str. 362-372, Complex - Analysis: Fifth Romanian-Finnish Seminar, Part I, Bucharest 1981
Uralegaddi, B.A., Somanatha, C. Certain classes of univalent functions. u: Current topics in analytic function theory, N.J., Edge River: World Sci. Publishing, 371-374
Uralegaddi, B.A., Ganigi, M.D., Sarangi, S.M. (1994) Univalent functions with positive coefficients. Tamkang J. Math., 25 (3); 225-230
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
DOI: 10.5937/MatMor1502075P
objavljen u SCIndeksu: 25.03.2017.