Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u prethodnih 30 dana:4
  • preuzimanja u prethodnih 30 dana:4
članak: 1 od 1  
Mathematica Moravica
2015, vol. 19, br. 2, str. 89-95
jezik rada: engleski
vrsta rada: neklasifikovan
doi:10.5937/MatMor1502089S


Some new integral inequalities via variant of Pompeii's mean value theorem
(naslov ne postoji na srpskom)
Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey

e-adresa: sarikayamz@gmail.com

Sažetak

(ne postoji na srpskom)
The main of this paper is to establish an inequality providing some better bounds for integral mean by using a mean value theorem. Our results generalize the results of Ahmad et. al in [8].

Ključne reči

Reference

Naknadno pridodat članak: provera, normiranje i linkovanje referenci u toku.
A.M. Acu, A. Babos and F.D. Sofonea, The mean value theorems and inequalities of Ostrowski type, Sci. Stud. Res. Ser. Math. Inform. 21 (2011), no. 1, 5-16.
S.S. Dragomir, An inequality of Ostrowski type via Pompeiu’s mean value theorem, J. of Inequal. in Pure and Appl. Math., 6(3) (2005), Art. 83.
I. Muntean, Extensions of some mean value theorems, Babes-Bolyai University, Faculty of Mathematics, Research Seminars on Mathematical Analysis, Preprint Nr. 7, 1991, 7-24.
P.P. Pecaric and S. Ungar, On an inequality of Ostrowski type, J. of Inequal. in Pure and Appl. Math., 7(4) (2006), Art. 151.
D. Pompeiu, Sur une proposition analogue au théorème des accroissements finis, Mathematica (Cluj, Romania), 22 (1946), 143-146.
E.C. Popa, An inequality of Ostrowski type via a mean value theorem,General Mathematics Vol. 15, No. 1, 2007, 93-100.
A. Ostrowski, Uber die Absolutabweichung einer differentierbaren Funktionen von ihrem Integralmittelwert, Comment. Math. Helv., 10(1938), 226-227.
F. Ahmad, N.A. Mir and M.Z. Sarikaya, An inequality of Ostrowski type via variant of Pompeiu’s mean value theorem,J. Basic. Appl. Sci. Res., 4(4)204-211, 2014.
P.K. Sahoo and T. Riedel, Mean Value Theorems and Functional Equations, World Scientific, Singapore, New Jersey, London, Hong Kong, 2000.