Akcije

Mathematica Moravica
kako citirati ovaj članak
podeli ovaj članak

Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:[3]
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:3
  • preuzimanja u poslednjih 30 dana:3

Sadržaj

članak: 1 od 1  
2016, vol. 20, br. 2, str. 15-21
Coefficient problem for certain subclasses of bi-univalent functions defined by convolution
(naslov ne postoji na srpskom)
Uludag University, Department of Mathematics, Bursa, Turkey

e-adresasyalcin@uludag.edu.tr
Sažetak
(ne postoji na srpskom)
In this paper, we consider a general subclass HλΣ (h, β) of bi-univalent functions. Bounds on the first two coefficients اa2ا and اa3ا for functions in HλΣ (h, β) are given. The main results generalize and improve a recent one obtained by Srivastava [18].
Reference
Altınkaya, S., Yalçın, S. (2015) Coefficient bounds for a subclass of bi-univalent functions. TWMS Journal of Pure and Applied Mathematics, Vol. 6, No. 2, 180-185
Altınkaya, Ş., Yalçın, S. (2015) Coefficient Estimates for Two New Subclasses of Biunivalent Functions with respect to Symmetric Points. Journal of Function Spaces, 2015: 1-5
Altınkaya, Ş., Yalçın, S. (2014) Initial Coefficient Bounds for a General Class of Biunivalent Functions. International Journal of Analysis, 2014: 1-4
Aouf, M.K., El-Ashwah, R.M., Abd-Eltawab, A.M. (2013) New Subclasses of Biunivalent Functions Involving Dziok-Srivastava Operator. ISRN Mathematical Analysis, 2013: 1-5
Brannan, D.A., Clunie, J. (1979) Aspects of contemporary complex analysis. u: NATO Advanced Study Instute Held at University of Durham, Proceedings, New York: Academic Press
Brannan, D.A., On, T.T.S. (1986) some classes of bi-univalent functions. Studia Universitatis Babes-Bolyai. Mathematica, Vol. 31, No. 2, pp. 70-77
Bulut, S. (2014) Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions. Comptes Rendus Mathematique, 352(6): 479-484
Duren, P.L. (1983) Univalent Functions. u: Grundlehren der Mathematischen Wissenschaften, New York, USA: Springer, 259
Frasin, B.A., Aouf, M.K. (2011) New subclasses of bi-univalent functions. Applied Mathematics Letters, 24(9): 1569-1573
Goswami, P., Alkahtani, B.S., Bulboacă, T. (2015) Estimate for initial maclaurin coefficients of certain sublasses of bi-univalent functions. http://arxiv.org/abs/1503.04644v1
Hamidi, S.G., Jahangiri, J.M. (2014) Faber polynomial coefficient estimates for analytic bi-close-to-convex functions. Comptes Rendus Mathematique, 352(1): 17-20
Jahangiri, J.M., Hamidi, S.G. (2013) Coefficient Estimates for Certain Classes of Bi-Univalent Functions. International Journal of Mathematics and Mathematical Sciences, 2013: 1-4
Lewin, M. (1967) On a coefficient problem for bi-univalent functions. Proceedings of the American Mathematical Society, 18(1): 63-63
Magesh, N., Yamini, J. (2013) Coefficient bounds for certain subclasses of bi-univalent functions. International Mathematical Forum, 8: 1337-1344
Netanyahu, E. (1969) The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in ¦z¦<1. Archive for Rational Mechanics and Analysis, 32(2): 100-112
Padmanabhan, K.S., Parvatham, R. (1976) Properties of a class of functions with bounded boundary rotation. Annales Polonici Mathematici, 31(3): 311-323
Porwal, S., Darus, M. (2013) On a new subclass of bi-univalent functions. Journal of the Egyptian Mathematical Society, 21(3): 190-193
Srivastava, H.M., Mishra, A.K., Gochhayat, P. (2010) Certain subclasses of analytic and bi-univalent functions. Applied Mathematics Letters, 23(10): 1188-1192
Srivastava, H.M., Bulut, S., Ҫaǧlar, M., Yağmur, N. (2013) Coefficient estimates for a general subclass of analytic and bi-univalent functions. Filomat, vol. 27, br. 5, str. 831-842
Xu, Q., Gui, Y., Srivastava, H.M. (2012) Coefficient estimates for a certain subclass of analytic and bi-univalent functions. Applied Mathematics Letters, 25(6): 990-994
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
DOI: 10.5937/MatMor1602015A
objavljen u SCIndeksu: 31.03.2017.