Metrika članka

  • citati u SCindeksu: 0
  • citati u Google Scholaru:[=>]
  • posete u prethodnih 30 dana:21
  • preuzimanja u prethodnih 30 dana:20
članak: 1 od 1  
Journal of Mining and Metallurgy A: Mining
2016, vol. 52, br. 1, str. 11-25
jezik rada: engleski
članak
doi:10.5937/JMMA1601011J

Creative Commons License 4.0
Ocena HPGR i VRM za suvo usitnjavanje mineralnih ruda
aMetso Process Technology and Innovation, Kenmore, Australia
bMetso Process Technology and Innovation, FI, Tampere, Finland
cUniversity of Queensland, St Lucia, Australia

e-adresa: alex.jankovic@metso.com

Sažetak

Rudarska industrija je u potrazi za energetski efikasnijom opremom za suvo usitnjavanje kao alternativom konvencionalnom drobljenju praćenom mokrim usitnjavanjem. Ovo je rezultat rastućih izazova vezanih za porast cena energenata, smanjenja broja dostupnih vodnih resursa i oštrije ekološke regulative. Tehnologije suvog usitnjavanja kao što su High Pressure Grinding Rolls (HPGR) i Vertical Roller Mills (VRM), se decenijama uspešno primenjuju u industriji cementa i uglja i literaturni izvori ukazuju na njihovu veću energetsku efikasnost u odnosu na konvencionalne metode. Kako bi se proverili literaturni navodi i ispitala mogućnost primene ovih tehnologija u rudarskoj industriji čvrstih stena testiranja u pilot postrojenju su sprovedena za obe ove tehnologije na uzorcima stena čije su karakteristike u skladu sa većinom ruda. Iako rezultati primene HPGR i VRM nisu međusobno uporedljivi zbog razlika u stepenu drobljenja obe tehnologije su pokazale potencijal za znatnim uštedama energije u poređenju sa konvencionalnim mlinovima sa kuglama. Ciklus HPGR i vazdušno klasiranje koristio je 20 - 30% manje energije od ciklusa HGPR, sita, mlin sa kuglama dok je procenjeno da VRM koristi 10 - 30% manje energije (u zavisnosti od tipa VRM) nego ciklus mlina sa kuglama za sličan stepen usitnjavanja.

Ključne reči

Reference

Altun, D., Gerold, C., Benzer, H., Altun, O., Aydogan, N., Langel, J. (2013) Ore grinding practices with Loesche OGP (ore grinding plant). u: Mobile, 13th European Symposium on Comminution & Classification, Braunschweig, Germany, 9-12 September 2013, 63-66
Aydoğan, N.A., Ergün, L., Benzer, H. (2006) High pressure grinding rolls (HPGR) applications in the cement industry. Minerals Engineering, 19(2): 130-139
Bernotat, S. (1991) Classifiers in roller grinding mills. Zement-Kalk-Gips, 44, 2, 79-83, English translation: 4, 73-75
Bond, F.C. (1961) Crushing and grinding calculations part 1. Chem. Eng, 6, 378-385
Brugan, J.M. (1992) State of the art raw grinding. Zement-Kalk-Gips, 45, 1, 9-13, English translation: 3, 59-62
Brundiek, H. (1989) The roller grinding mill - its history and current situation part 1. Aufbereitungs-Technik, 30, 10, 609-619
Crosbie, R., Robertson, C., Smit, I., Ser, V. (2005) The benefits of inter-particle comminution on flotation. u: Centenary of Flotation Symposium, Brisbane, QLD, Australia, 6-9 June 2005, 823-828
Daniel, M.J. (2007) Energy efficient mineral liberation using HPGR technology. Brisbane, Australia: University of Queensland, PhD Thesis
Feige, F. (1993) The roller grinding mill - current technical position and potential for development. Zement-Kalk-Gips, 46, 10, E287-E292
Gerold, C., Schmitz, C., Stapelmann, M., Dardemann, F. (2012) Recent installations and developments of Loesche vertical - roller - mills in the ore industry. u: Comminution 12, Cape Town, South Africa, 17-20 April 2012
Gupta, A., Yan, D.S. (2006) Mineral processing design and operation. Oxford: Elsevier
Hilden, M., Suthers, S. (2010) Comparing energy efficiency of multi-pass high pressure grinding roll (HPGR) circuits. u: XXV International Mineral Processing Congress (IMPC) 2010 Proceedings, Brisbane: The Australasian Institute of Mining and Metallurgy, 801-811
International Mining (2012) Better processing. September 2012, 128
Ito, M., Sato, K., Naoi, Y. (1997) Productivity increase of the vertical roller mill for cement grinding. u: Cement Industry Technical Conference, XXXIX Conference Record, 20-24 April 1997, Hershey, PA, United States, 177-194
Jankovic, A., Suthers, S., Wills, T., Valery, W. (2015) Evaluation of dry grinding using HPGR in closed circuit with an air classifier. Minerals Engineering, 71: 133-138
Jankovic, A., Valery, W. (2013) Closed circuit ball mill – Basics revisited. Minerals Engineering, 43-44: 148-153
Karassik, I.J., Messina, J.P., Cooper, P., Heald, C.C., ur. (2001) Pump Handbook. New York: McGraw-Hill
Little, W.M., Mainza, A.N., Becker, M., Gerold, C., Langel, J., Naik, S. (2015) Assessing the performance of the vertical roller mill for grinding Platreef ore. u: SAG Conference 2015, Vancouver, Canada, 20-23 September 2015, Poster 19
Rosario, P., Hall, R. (2008) Analyses of the total required energy for comminution of hard ores in SAG mill and HPGR circuits. u: 5th International Mineral Processing Seminar (Procemin 2008), Santiago: University of Chile, 129-138
Schaefer, H.U. (2001) Loesche vertical roller mills for the comminution of ores and minerals. Minerals Engineering, 14(10): 1155-1160
Sherry, A., Beck, J.S., Cruddace, A.E., Fortune, H., Glendinning, J.W., Hodgkinson, A.J., Martin, W.L., Murfit, R.H., Myers, F.H.E., ur. (1971) Modern Power Station Practice. Hungary: Pergamon Press
Spero, C. (1989) The influence of coal properties on the grinding and wear characteristics of ring-and-ball pulverisers. Queensland University of Technology, Master of Engineering Thesis
van der Meer, F.P., Önol, S., Strasser, S. (2012) Case Study of dry HPGR grinding and classification in ore processing. u: 9th International Mineral Processing Conference (Procemin 2012), Gecamin, Santiago, 32-34
van drunick W., Gerold, C., Palm, N. (2010) Implementation of an energy efficient dry grinding technology into an Anglo American zinc beneficiation process. u: 25th Mineral Processing Congress Proceedings, 6-10 September 2010, Brisbane, Australia, 1333-1341
Weir Minerals (2011) Introduction to high pressure grinding roll technology in mining. Madison, USA