Metrika članka

  • citati u SCindeksu: 0
  • citati u Google Scholaru:[=>]
  • posete u prethodnih 30 dana:2
  • preuzimanja u prethodnih 30 dana:2
članak: 1 od 1  
Kragujevac Journal of Mathematics
2015, vol. 39, br. 2, str. 231-254
jezik rada: engleski
neklasifikovan
doi:10.5937/KgJMath1502231M


New Hadamard's inequality for (s1,s2) preinvex functions on co-ordinates
(naslov ne postoji na srpskom)
University of 8 Mai, Guelma, Algeria

e-adresa: badrimeftah@yahoo.fr, khaledv2004@yahoo.fr, tchihe

Sažetak

(ne postoji na srpskom)
In this paper the authors introduce a new classes of preinvexity called (s1; s2)-preinvex functions on co-ordinates in the first and the second sense and establish some new Hermite-Hadamard type inequalities for those new concepts.

Ključne reči

Hermite-Hadamard inequality; co-ordinates preinvex; (s1, s2)-preinvex functions on co-ordinates

Reference

Alomari, M., Darus, M. (2008) Co-ordinated s-convex function in the first sense with some Hadamardtype inequalities. Int. J. Contemp. Math. Sci., 1557-1567; 3
Alomari, M., Darus, M. (2008) The Hadamard's inequality for s-convex function. Int. J. Math. Anal. (Ruse), 639-646; 2
Alomari, M., Darus, M. (2008) On co-ordinated s-convex functions, Int. Math. Forum, 1977-1989; 3
Amer, L.M., Dragomir, S.S. (2013) Some Hermite-Hadamard type inequalities for functions whose partial derivatives in absolute value are preinvex on the co-ordinates. Facta universitatis - series: Mathematics and Informatics, vol. 28, br. 3, str. 257-270
Barani, A., Ghazanfari, A., Dragomir, S. (2011) Hermite-Hadamard inequality for functions whose derivatives absolute values are preinvex. RGMIA Res. Rep. Coll., 14, Article ID 64
Ben-Israel, A., Mond, B. (1986) What is invexity?. Journal of the Australian Mathematical Society. Series B. Applied Mathematics, 28(01): 1
Dragomir, S.S. (2001) On the Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plane. Taiwanese Journal of Mathematics, 5, 775-788
Gurzau, M.O. (1987) A generalization of the convexity II. u: Itinerant Seminar on Functional Equations, Approximation and Convexity, Cluj-Napoca, Cluj-Napoca: Univ. ‘Babes-Bolyai’, vol. 87 of Preprint, pp. 167-170
Hanson, M.A. (1981) On sufficiency of the Kuhn-Tucker conditions. Journal of Mathematical Analysis and Applications, 80(2): 545-550
Kirmaci, U.S., Bakula-Klaričić, M., Özdemir, M.E., Pečarić, J. (2007) Hadamard-type inequalities for s-convex functions. Applied Mathematics and Computation, 193(1): 26-35
Latif, M.A., Alomari, M. (2009) Hadamard-type inequalities for product two convex functions on the co-ordinates. Int. Math. Forum, 2327-2338; 4
Latif, M.A., Alomari, M. (2009) On Hadmard-type inequalities for h-convex functions on the co-ordinates. Int. J. Math. Anal. (Ruse), 1645-1656; 3
Matłoka, M. (2013) On some Hadamard-type inequalities for (h1,h2)-preinvex functions on the co-ordinates. Journal of Inequalities and Applications, 2013(1): 227
Mohan, S.R., Neogi, S.K. (1994) On invex sets and preinvex functions. J. Math. Anal. Appl., 189: 901-908
Noor, A.M. (1994) Variational-like inequalities. Optimization, 30(4): 323-330
Noor, M.A. (2005) Invex equilibrium problems. Journal of Mathematical Analysis and Applications, 302(2): 463-475
Pečarić, J., Proschan, F., Tong, Y.L. (1992) Convex functions, partial orderings and statistical applications. u: Mathematics in Science and Engineering 187, San Diego: Academic Press
Pini, R. (1991) Invexity and generalized convexity. Optimization, 22(4): 513-525
Qi, F., Wei, Z.L., Yang, Q. (2005) Generalizations and refinements of Hermite-Hadamards inequality. Rocky Mountain J. Math, 35, br. 1, 235-251
Saglam, A., Yildirim, H., Sarikaya, M.Z. (2010) Some new inequalities of Hermite-Hadamard’s type. Kyungpook mathematical journal, 50(3): 399-410
Sarıkaya, M.Z., Set, E., Ozdemir, M., Dragomir, S.S. (2012) New some Hadamard's type inequalities for co-ordinated convex functions. Tamsui Oxf. J. Inf. Math. Sci., 137-152; 28
Sarikaya, M.Z., Aktan, N. (2011) On the generalization of some integral inequalities and their applications. Mathematical and Computer Modelling, 54(9-10): 2175-2182
Toader, G. (1985) Some generalizations of the convexity. u: Proceedings of the colloquium on approximation and optimization (Cluj-Napoca, 1985), Cluj-Napoca: Univ. Cluj-Napoca, pp. 329-338
Weir, T., Mond, B. (1988) Pre-invex functions in multiple objective optimization. Journal of Mathematical Analysis and Applications, 136(1): 29-38
Yang, X.M., Li, D. (2001) On Properties of Preinvex Functions. Journal of Mathematical Analysis and Applications, 256(1): 229-241