Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:9
  • preuzimanja u poslednjih 30 dana:7
članak: 1 od 1  
Kragujevac Journal of Science
2014, br. 36, str. 33-40
jezik rada: engleski
vrsta rada: neklasifikovan
doi:10.5937/KgJSci1436033H


Time varying rotating disk flow with heat transfer of a non-Newtonian fluid in porous medium
(naslov ne postoji na srpskom)
aDepartment of Engineering Mathematics and Physics, Faculty of Engineering, El-Fayoum University, El-Fayoum, Egypt
bDepartment of Engineering Mathematics and Physics, Faculty of Engineering, Cairo University, Giza, Egypt

e-adresa: ah1113@yahoo.com

Sažetak

(ne postoji na srpskom)
Time varying flow through a porous medium of an incompressible viscous non-Newtonian fluid due to a rotation of an infinite rotating disk is studied with heat transfer. Numerical solutions using finite differences are obtained for the nonlinear partial differential equations which govern the hydrodynamics and energy transfer. The effect of the porosity of the medium and the characteristics of the non-Newtonian fluid on the velocity and temperature distributions is considered.

Ključne reči

Reference

Ames, W.F. (1977) Numerical methods for partial differential equations. New York: Academic Press, 2nd ed
Attia, H.A. (2003) Unsteady flow of a non-Newtonian fluid above a rotating disk with heat transfer. International Journal of Heat and Mass Transfer, 46(14): 2695-2700
Attia, H.A. (1998) Unsteady MHD flow near a rotating porous disk with uniform suction or injection. Fluid Dynamics Research, vol. 23, str. 283-290
Attia, H.A. (2006) On the effectiveness of uniform suction and injection on unsteady rotating disk flow in porous medium with heat transfer. Computational Materials Science, 38(2): 240-244
Benton, E.R. (1966) On the flow due to a rotating disk. J. Fluid Mech, vol. 24, br. 4, str. 781-800
Cochran, W.G. (1934) The flow due to a rotating disk. Proc. Cambridge Philos. Soc, vol. 30, br. 3, str. 365-375
Ingham, D.B., Pop, I. (2002) Transport phenomena in porous media. Oxford: Pergamon
Joseph, D.D., Nield, D.A., Papanicolaou, G. (1982) Nonlinear equation governing flow in a saturated porous medium. Water Resources Research, 18(4): 1049-1052
Khaled, A.R.A., Vafai, K. (2003) The role of porous media in modeling flow and heat transfer in biological tissues. International Journal of Heat and Mass Transfer, 46(26): 4989-5003
Millsaps, K., Pohlhausen, K. (1952) Heat transfer by laminar flow from a rotating disk. J. of the Aeronautical Sciences, Vol. 19, pp. 120-126
Mithal, K.G. (1961) On the effects of uniform high suction on the steady flow of a non- Newtonian liquid due to a rotating disk. Quarterly Journal of Mechanics and Applied Mathematics, 14(4): 403-410
Sparrow, E.M., Gregg, J.L. (1960) Mass Transfer, Flow, and Heat Transfer About a Rotating Disk. Journal of Heat Transfer, 82(4): 294
von Karman, T. (1921) Uber laminare und turbulente reibung. ZAMM, vol. 1, br. 4, str. 233-235