- citati u SCIndeksu: [2]
- citati u CrossRef-u:[3]
- citati u Google Scholaru:[
]
- posete u poslednjih 30 dana:2
- preuzimanja u poslednjih 30 dana:2
|
|
|
2017, vol. 45, br. 4, str. 548-558
|
|
Dinamika sagorevanja u položaju gornje mrtve tačke kod benzinskog motora
Combustion dynamics at the top dead center position of a spark ignition engine
aNigerian Defence Academy Department of Mechanical Engineering Kaduna, Nigeria bTexas Southern University, Department of Industrial Technologies Houston, Texas, USA cKwara State University, College of Engineering and Technology Malete, Kwara State, Nigeria
e-adresa: anetor55@yahoo.com
Sažetak
Model bezdimenzionog benzinskog motora smo koristili za sistematsko proučavanje dinamike sagorevanja u položaju g.m.t. kod motora - 5.734 l, V8. Model uključuje sve eksperimentom uočene bitne karakteristike u položaju g.m.t. Numerički model je korišćen za ispitivanje dinamike sagorevanja pri stepenu kompresije rc = 9,5; 10,5; 11,5 i 15,5 i ekvivalentnom odnosu goriva i vazduha φ = 1,0. Rezultati pokazuju da se za rc = 15,5 punjenje goriva i oksidatora koristi gotovo trenutno. Osim toga, podaci pokazuju da je bilo potrebno 153,0; 52,6; 21,0 i 1,43ms pri rc = 9,5; 10,5; 11,5 odnosno 15,5 da dinamika sagorevanja u cilindru dostigne vrednost T* = 1,0. Za poslednjih 0,01ms, kod svih stepena kompresije, brzina promene pritiska dp/dt je bila u opsegu 108
Abstract
A zero-dimensional spark ignition engine model was used to conduct a systematic study of combustion dynamics at the top dead center (TDC) position of a 5.734 liter, V8 spark-ignition engine. The model captures all the experimentally observed essential features concerning combustion at the TDC. The combustion dynamics at compression ratios, rc = 9.5, 10.5, 11.5 and 15.5 and fuel-air equivalence ratio, φ = 1.0 were investigated with the numerical model. The results show that for rc = 15.5, the fueloxidizer charge was consumed almost instantaneously. Furthermore, the data shows that it took about 153.0, 52.6, 21.0 and 1.43 ms at compression ratios, rc of 9.5, 10.5, 11.5 and 15.5 respectively for the in-cylinder combustion dynamics to reach a value T* = 1.0. In the last 0.01 ms, for all compression ratios, the rate of change of pressure, dp/dt lies in the range 108 < dp/dt < 1014 Pa/s while the corresponding temperature varies from 2230 ≤ T ≤ 2700 K. The study also shows that as the compression ratio increases both the adiabatic flame temperature and heat of combustion at the top dead center increases monotonically as well.
|
|
|
|
Reference
|
|
|
Anil, W. (2011) Date, analytic combustion: With thermodynamics, chemical kinetics, and mass transfer. New York, USA
|
|
|
Anthony, P. (2009) Development of a rate of injection bench and constant volume combustion chamber for diesel spray diagnostics. u: Graduate Theses and Dissertations - Paper 10691, Ames, Iowa: Iowa State University
|
|
|
Bobusch, B.C., Berndt, P., Paschereit, C.O., Klein, R. (2014) Shockless Explosion Combustion: An Innovative Way of Efficient Constant Volume Combustion in Gas Turbines. Combustion Science and Technology, 186(10-11): 1680-1689
|
|
4
|
Borman, G.L., Ragland, K.W. (1998) Combustion engineering. New York, itd: McGraw-Hill
|
|
|
Daniel, A., Sorin, G., Mărunţelu, N. Modeling of constant volume combustion of propellants for artillery weapons. Bucharest, Roman: Military Technical Academy, http://www.agir.ro/buletine/1739.pdf
|
|
|
Ferguson, C.R., Kirkpatrick, A.T. (2015) Internal combustion engines, applied thermosciences. Wiley Publishers, Third Edition
|
|
|
Firmansyah,, Aziz, A.R.A., Heikal, M.R. (2015) The combustion behavior of diesel/CNG mixtures in a constant volume combustion chamber. u: 3rd International Conference of Mechanical Engineering Research (ICMER 2015), IOP Conf. Series: Materials Science and Engineering, 100: 012032
|
|
|
Hinton, I., Nathan, D. (2014) Measuring laminar burning velocities using constant volume combustion vessel techniques. D. Phil. University of Oxford, https://ora.ox.ac.uk:443/objects/uuid:5b641b04-8040-4d49-a7e8-aae0b0ffc8b5
|
|
4
|
Kays, W.M., Crawford, M.E. (1993) Convective heat and mass transfer. New York: McGraw-Hill, Inc
|
|
|
Liu, H., Lee, C., Liu, Y., Huo, M., Yao, M. (2011) Spray and Combustion Characteristics of n-Butanol in a Constant Volume Combustion Chamber at Different Oxygen Concentrations. u: SAE Technical Paper 2011-01- 1190, 400 Commonwealth Drive, Warrendale, PA, United States: SAE International
|
|
|
Luijten, C.C.M., Doosje, E., de Goey, L.P.H. (2009) Accurate analytical models for fractional pressure rise in constant volume combustion. International Journal of Thermal Sciences, 48(6): 1213-1222
|
|
|
Travis, T.J. (2014) A computational investigation of a constant volume combustion jet engine. North Carolina State University, PhD. Thesis 3586223, 184
|
|
2
|
Westbrook, C.K., Dryer, F.L. (1981) Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames. Combustion Science and Technology, 27(1-2): 31-43
|
|
|
Yan, F., Su, W. (2014) Numerical Study on Exergy Losses of n -Heptane Constant-Volume Combustion by Detailed Chemical Kinetics. Energy & Fuels, 28(10): 6635-6643
|
|
|
Zhang, H., Bai, X., Jeong, D., Cho, G., Choi, S., Lee, J. (2010) Fuel combustion test in constant volume combustion chamber with built-in adaptor. Science China Technological Sciences, 53(4): 1000-1007
|
|
|
Zhang, J., Fang, T. (2011) Spray Combustion of Biodiesel and Diesel in a Constant Volume Combustion Chamber. u: SAE Technical Paper 2011-01-1380, 400 Commonwealth Drive, Warrendale, PA, United States: SAE International
|
|
|
|
|