Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:[2]
  • citati u Google Scholaru:[=>]
  • posete u prethodnih 30 dana:13
  • preuzimanja u prethodnih 30 dana:13
članak: 1 od 1  
Telfor Journal
2015, vol. 7, br. 1, str. 26-30
jezik rada: engleski
vrsta rada: neklasifikovan
doi:10.5937/telfor1501026I


Classifying sEMG-based hand movements by means of principal component analysis
(naslov ne postoji na srpskom)
aUniversity of Belgrade - School of Electrical Engineering, Belgrade + Tecnalia Serbia Ltd., Belgrade
bUniverzitet u Beogradu, Elektrotehnički fakultet

e-adresa: milicaisakovic@hotmail.com, nadica.miljkovic@etf.rs, mpo@etf.rs

Projekat

Efekti asistivnih sistema u neurorehabilitaciji: oporavak senzorno-motornih funkcija (MPNTR - 175016)

Sažetak

(ne postoji na srpskom)
In order to improve surface electromyography (sEMG) based control of hand prosthesis, we applied Principal Component Analysis (PCA) for feature extraction. The sEMG data from a group of healthy subjects (downloaded from free NINAPRO database) comprised the following sets: three grasping, eight wrist, and eleven finger movements. We tested the accuracy of a simple quadratic classifier for two sets of features derived from PCA. Preliminary results suggest that the first two principal components do not guarantee successful hand movement classification. The hand movement classification accuracy significantly increased with using three instead of two features, in all three sets of movements and throughout all subjects.

Ključne reči

feature extraction; healthy subjects; grasp; principal component analysis; surface electromyography

Reference

*** (2014) Ninaweb: The Ninapro project database web interface. January, http://ninapro.hevs.ch/.Database
Ajiboye, A.B., Weir, R.F.H. (2005) A Heuristic Fuzzy Logic Approach to EMG Pattern Recognition for Multifunctional Prosthesis Control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 13(3): 280-291
Atkins, D.J., Heard, D.C.Y., Donovan, W.H. (1996) Epidemiologic Overview of Individuals with Upper-Limb Loss and Their Reported Research Priorities. JPO Journal of Prosthetics and Orthotics, 8(1): 2-11
Atzori, M., Gijsberts, A., Heynen, S., Hager, A.G., Castellimi, C., Caputo, B., Müller, H. (2012) Experiences in the Creation of an Electromyography Database to Help Hand Amputated Persons. Studies in Health Technology and Informatics, vol. 180, pp. 828-832
Atzori, M., Müller, H. (2014) Electromyography low pass filtering effects on the classification of hand movements in amputated subjects. u: SCIEI International Conference on Digital Signal Processing (ICDSP), November 19-21, Milano, Italy
Atzori, M., Gijsberts, A., Kuzborskij, I., Elsig, S., Hager, A.M., Deriaz, O., Castellini, C., Muller, H., Caputo, B. (2015) Characterization of a Benchmark Database for Myoelectric Movement Classification. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 23(1): 73-83
Atzori, M., Gijsberts, A., Heynen, S., Hager, A.M., Deriaz, O., van der Smagt, P., Castellini, C., Caputo, B., Muller, H. (2012) Building the Ninapro database: A resource for the biorobotics community. u: 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 1258-1265
Atzori, M., Muller, H., Baechler, M. (2013) Recognition of hand movements in a trans-radial amputated subject by sEMG. u: IEEE 13th International Conference on Rehabilitation Robotics (ICORR), pp 1-5
Bosco, G. (2010) Principal Component Analysis of Electromyographic Signals: An Overview. Open Rehabilitation Journal, 3(1): 127-131
Chan, A.D.C., Englehart, K.B. (2005) Continuous myoelectric control for powered prostheses using hidden Markov models. IEEE transactions on bio-medical engineering, 52(1): 121-4
Englehart, K., Hudgins, B., Parker, P., Stevenson, M. (1999) Classification of the myoelectric signal using time-frequency based representations. Medical Engineering & Physics, 21(6-7): 431-438
Englehart, K., Hudgins, B., Parker, P.A. (2001) A wavelet-based continuous classification scheme for multifunction myoelectric control. IEEE transactions on bio-medical engineering, 48(3): 302-11
Englehart, K., Hudgins, B. (2003) A robust, real-time control scheme for multifunction myoelectric control. IEEE transactions on bio-medical engineering, 50(7): 848-54
Fukunaga, K. (1990) Introduction to statistical pattern recognition. Waltham, MA: Academic Press, ed. 2, pp. 1-591
Graupe, D., Salahi, J., Kohn, K.H. (1982) Multifunctional prosthesis and orthosis control via microcomputer identification of temporal pattern differences in single-site myoelectric signals. Journal of biomedical engineering, 4(1): 17-22
Güler, N.F., Koçer, S. (2005) Classification of EMG signals using PCA and FFT. Journal of medical systems, 29(3): 241-50
Hargrove, L.J., Li, G., Englehart, K.B., Hudgins, B.S. (2009) Principal components analysis preprocessing for improved classification accuracies in pattern-recognition-based myoelectric control. IEEE transactions on bio-medical engineering, 56(5): 1407-14
Hermens, H.J., Freriks, B., Disselhorst-Klug, C., Rau, G. (2000) Development of recommendations for SEMG sensors and sensor placement procedures. Journal of Electromyography and Kinesiology, 10(5): 361-374
Isaković, M. (2014) Muscle onset detection: Methods for online and offline applications. u: First Conference on Brain-Computer Interface from Student-to-Student Interface (BCIfrom SSI), Belgrade: Academic Mind, March 14
Isaković, M.S., Miljković, N., Štrbac, M., Popović, M.B. (2015) Classification of sEMG-based hand movements is affected by electrode array positioning. u: Second Conference on Human- Machine Interface from Student-to-Student Interface (HMI from SSI), Belgrade: Academic Mind, March 20
Jolliffe, I.T. (2002) Principal component analysis. New York: Springer
Kang, W.J., Shiu, J.R., Cheng, C.K., Lai, J.S., Tsao, H.W., Kuo, T.S. (1995) The application of cepstral coefficients and maximum likelihood method in EMG pattern recognition. IEEE transactions on bio-medical engineering, 42(8): 777-85
Oskoei, M.A., Hu, H. (2008) Support Vector Machine-Based Classification Scheme for Myoelectric Control Applied to Upper Limb. IEEE Transactions on Biomedical Engineering, 55(8): 1956-1965
Parker, P., Englehart, K., Hudgins, B. (2006) Myoelectric signal processing for control of powered limb prostheses. Journal of Electromyography and Kinesiology, 16(6): 541-548
Smit, G., Bongers, R.M., van der Sluis, C.K., Plettenburg, D.H. (2012) Efficiency of voluntary opening hand and hook prosthetic devices: 24 years of development?. Journal of Rehabilitation Research and Development, 49(4): 523
Staudenmann, D., Kingma, I., Daffertshofer, A., Stegeman, D.F., van Dieën, J.H. (2006) Improving EMG-based muscle force estimation by using a high-density EMG grid and principal component analysis. IEEE transactions on bio-medical engineering, 53(4): 712-9
Tang, X., Liu, Y., Lv, C., Sun, D. (2012) Hand motion classification using a multi-channel surface electromyography sensor. Sensors, 12(2): 1130-47