Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u prethodnih 30 dana:4
  • preuzimanja u prethodnih 30 dana:4
članak: 1 od 1  
Telfor Journal
2016, vol. 8, br. 1, str. 50-55
jezik rada: engleski
vrsta rada: neklasifikovan
doi:10.5937/telfor1601050S


Breast region segmentation and pectoral muscle removal in mammograms
(naslov ne postoji na srpskom)
aInnovation Center of the School of Electrical Engineering, Belgrade
bUniverzitet u Beogradu, Elektrotehnički fakultet

e-adresa: mariyeta667@yahoo.com, anaga777@gmail.com, msmilance@etf.rs, irini@etf.rs, reljinb@etf.rs

Projekat

Razvoj digitalnih tehnologija i umreženih servisa u sistemima sa ugrađenim elektronskim komponentama (MPNTR - 44009)

Sažetak

(ne postoji na srpskom)
The first step in most computer aided diagnosis systems is an accurate segmentation of breast region, which affects not only the accuracy but also the speed of the analysis because it significantly reduces the area of the image to be examined. The second step usually includes removal of pectoral muscle region, which is seen in mediolateral oblique view mammograms. This is primarily done to reduce the number of false positive breast cancer detections. In this paper, a method for the segmentation of breast region based on contrast enhancement and k-means algorithm is proposed. To extract pectoral muscle, a region of interest is found, its contrast is enhanced and the pectoral muscle is identified using k-means algorithm. Cubic polynomial fitting is used for the estimation of muscle's boundary. The method is validated with mammograms from miniMIAS database.

Ključne reči

breast segmentation; computer aided detection; MIAS database; pectoral muscle

Reference

*** (2016) Breast cancer: Prevention and control. WHO, WHO
*** (2015) The mini-MIAS database of mammograms. [Online]. Available: http://peipa.essex.ac.uk/info/mias.html. [Accessed: 05-Oct-2015]
Agrawal, P., Vatsa, M., Singh, R. (2014) Saliency based mass detection from screening mammograms. Signal Processing, 99: 29-47
Berber, T., Alpkocak, A., Balci, P., Dicle, O. (2013) Breast mass contour segmentation algorithm in digital mammograms. Computer methods and programs in biomedicine / Comput Methods Programs Biomed, 110(2): 150-9
Dheeba, J., Singh, N. A., Selvi, S. T. (2014) Computer-aided detection of breast cancer on mammograms: A swarm intelligence optimized wavelet neural network approach. Journal of Biomedical Informatics, 49: 45-52
Eltoukhy, M.M., Faye, I., Samir, B.B. (2010) Breast cancer diagnosis in digital mammogram using multiscale curvelet transform. Computerized medical imaging and graphics, 34(4): 269-76
Huang, S., Cheng, F., Chiu, Y. (2013) Efficient contrast enhancement using adaptive gamma correction with weighting distribution. IEEE transactions on image processing, 22(3): 1032-41
Kus, P., Karagoz, I. (2012) Fully automated gradient based breast boundary detection for digitized X-ray mammograms. Computers in biology and medicine / Comput. Biol. Med., 42(1): 75-82
Liu, C., Tsai, C., Tsui, T., Yu, S. (2012) An improved GVF snake based breast region extrapolation scheme for digital mammograms. Expert Systems with Applications, 39(4): 4505-4510
Liu, C., Tsai, C., Liu, J., Yu, C., Yu, S. (2012) A pectoral muscle segmentation algorithm for digital mammograms using Otsu thresholding and multiple regression analysis. Computers & Mathematics with Applications, 64(5): 1100-1107
Lladó, X., Oliver, A., Freixenet, J., Martí, R., Martí, J. (2009) A textural approach for mass false positive reduction in mammography. Computerized medical imaging and graphics, 33(6): 415-22
Maitra, I.K., Nag, S., Bandyopadhyay, S.K. (2012) Technique for preprocessing of digital mammogram. Computer methods and programs in biomedicine / Comput Methods Programs Biomed, 107(2): 175-88
Mustra, M., Grgic, M. (2013) Robust automatic breast and pectoral muscle segmentation from scanned mammograms. Signal Processing, 93(10): 2817-2827
Reljin, B., Milosević, Z., Stojić, T., Reljin, I. (2009) Computer aided system for segmentation and visualization of microcalcifications in digital mammograms. Folia histochemica et cytobiologica / Folia Histochem. Cytobiol., 47(3): 525-32
Slavkovic-Ilic, M., Gavrovska, A., Milivojevic, M., Reljin, I., Reljin, B. (2015) The algorithm for automatic segmentation of breast and pectoral muscle regions from mammograms. Telfor Journal, pp. 803-806
Suckling, J., Parker, J., Dance, D., Astley, S., Hutt, I., Boggis, C., Ricketts, I., Stamatakis, E., Cerneaz, N., Kok, S., Taylor, P., Betal, D., Savage, J. (1994) The mammographic image analysis society digital mammogram database. Expert. Medica, Int. Congr. Ser, vol. 1069, pp. 375-378, Jan
Varela, C., Tahoces, P.G., Méndez, A.J., Souto, M., Vidal, J.J. (2007) Computerized detection of breast masses in digitized mammograms. Computers in biology and medicine / Comput. Biol. Med., 37(2): 214-26
Wang, Z., Yu, G., Kang, Y., Zhao, Y., Qu, Q. (2014) Breast tumor detection in digital mammography based on extreme learning machine. Neurocomputing, 128: 175-184