Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u prethodnih 30 dana:1
  • preuzimanja u prethodnih 30 dana:0
članak: 1 od 1  
Telfor Journal
2016, vol. 8, br. 1, str. 62-67
jezik rada: engleski
vrsta rada: neklasifikovan
doi:10.5937/telfor1601062B


A comparative study of voltage, peak current and dual current mode control methods for noninverting buck-boost converter
(naslov ne postoji na srpskom)
Faculty of Electrical Engineering, University of East Sarajevo, East Sarajevo, Bosnia and Herzegovina

e-adresa: marko.boskovic@etf.unssa.rs.ba

Sažetak

(ne postoji na srpskom)
This paper presents a comparison of voltage mode control (VMC) and two current mode control (CMC) methods of noninverting buck-boost converter. The converter control-to-output transfer function, line-to-output transfer function and the output impedance are obtained for all methods by averaging converter equations over one switching period and applying small-signal linearization. The obtained results are required for the design procedure of feedback compensator to keep a system stable and robust. A comparative study of VMC, peak current mode control (PCMC) and dual-current mode control (DCMC) is performed. Performance evaluation of the closed-loop system with obtained compensator between these methods is performed via numerical simulations.

Ključne reči

noninverting buck-boost converter; voltagemode control; current mode control; performance

Reference

Andersen, G.K., Blaabjerg, F. (2006) Current programmed control of a single-phase two-switch buck-boost power factor correction circuit. IEEE Transactions on Industrial Electronics, 53(1): 263-271
Anunciada, A.V., Silva, M.M. (1991) A new current mode control process and applications. IEEE Transactions on Power Electronics, 6(4): 601-610
Bošković, M. (2015) Voltage, peak current and dual current mode control methods of noninverting buck-boost converter. Telfor Journal, pp. 1024-1027
Chen, J., Maksimovic, D., Erickson, R.W. (2006) Analysis and design of a low-stress buck-boost converter in universal-input PFC applications. IEEE Transactions on Power Electronics, 21(2): 320-329
Choi, B. (2013) Pulsewidth modulated Dc-to-Dc power conversion. Hoboken, New Jersey: John Wiley & Sons, pp. 245-639
de Vaz, C.R.R., Pimentel, S.P., Araújo, S. (2015) Analysis and control of a non-inverter Buck-Boost power DC-DC converter by state-space modeling and applied to PV systems under MPPT operation. u: Innovative Smart Grid Technologies Latin America (ISGT LATAM), 2015 IEEE PES, Montevideo, pp. 338-343
Erb, D.C., Onar, O.C., Khaligh, A. (2010) An integrated bi-directional power electronic converter with multi-level AC-DC/DC-AC converter and non-inverted buck-boost converter for PHEVs with minimal grid level disruptions. u: IEEE Vehicle Power and Propulsion Conference, Lille, pp. 1-6
Erickson, R.W., Maksimović, D. (2001) Fundamentals of power electronics. Boston: Kluwer Ac. Publishers, 2nd ed. pp 331-487
Johansson, B. (2003) Improved Models for DC-DC Converters, Linc. Lund: Lund University, PhD thesis
Jong-Seok, K., Jae-Yoon, L., Byong-Deok, C. (2015) High-efficiency peak-current-control non-inverting buck-boost converter using mode selection for single Ni-MH cell battery operation. u: Nordic Circuits and Systems Conf. (NORCAS): NORCHIP & Inter. Symp. on System-on-Chip (SoC), 26-28 Oct, pp. 1-4, 26-28
Karl, J. (2006) Advanced PID control. ISA-Instrumentation, Systems and Automation Society
Kazimierczuk, M.K. (2008) Pulse-width modulated DC-DC power converters. J. Wiley and Sons, Ltd
Lale, S., Lubura, S., Radmanović, M. (2014) Modeling and analysis of new adaptive dual current mode control. u: INDEL, Banja Luka, November 06-08
Lee, Y.J., Emadi, A. (2007) Integrated bi-directional AC/DC and DC/DC converter for plug-in hybrid electric vehicle conversion. u: IEEE Vehicle Power and Propulsion Conference, Arlington, TX, pp. 215-222
Liao, H.-K., Liang, T.-J., Yang, L.-S., Chen, J.-F. (2012) Non-inverting buck–boost converter with interleaved technique for fuel-cell system. IET Power Electronics, 5(8): 1379
Lin, R., Wang, R. (2010) Non-inverting buck-boost power-factor-correction converter with wide input-voltage-range applications. u: 36th Annu. Conf. IEEE Ind. Electron. Soc. Nov, Proc, pp. 599-604
Mataušek, M.R., Šekara, T.B. (2011) PID controller frequency-domain tuning for stable, integrating and unstable processes, including dead-time. Journal of Process Control, 21(1): 17-27
Restrepo, C., Calvente, J., Cid-Pastor, A., Aroudi, A.E., Giral, R. (2011) A Noninverting Buck–Boost DC–DC Switching Converter With High Efficiency and Wide Bandwidth. IEEE Transactions on Power Electronics, 26(9): 2490-2503
Sahu, B., Rincon-Mora, G.A. (2004) A Low Voltage, Dynamic, Noninverting, Synchronous Buck-Boost Converter for Portable Applications. IEEE Transactions on Power Electronics, 19(2): 443-452
Schaltz, E., Rasmussen, P.O., Khaligh, A. (2008) Non-inverting buck-boost converter for fuel cell applications. u: 34th Annual Conference of IEEE Industrial Electronics, Proc, pp. 855-860
Shiau, J.K., Cheng, C.J., Tseng, C.E. (2008) Stability analysis of a noninverting synchronous buck-boost power converter for a solar power management system. u: IEEE International Conference on Sustainable Energy Technologies (ICSET) - Singapore, 24-27 Nov, pp. 263-268
Šekara, T.B., Trifunović, M.B., Govedarica, V. (2011) Frequency domain design of a complex controller under constraints on robustness and sensitivity to measurement noise. Electronics, vol. 15, pp. 40-44
Wei, C., Chen, C., Wu, K., Ko, I. (2012) Design of an Average-Current-Mode Noninverting Buck–Boost DC–DC Converter With Reduced Switching and Conduction Losses. IEEE Transactions on Power Electronics, 27(12): 4934-4943