Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u prethodnih 30 dana:2
  • preuzimanja u prethodnih 30 dana:1
članak: 1 od 1  
Telfor Journal
2016, vol. 8, br. 2, str. 127-132
jezik rada: engleski
vrsta rada: neklasifikovan
doi:10.5937/telfor1602127L


Reconfigurable virtual environment for multirobot operations and its application in education
(naslov ne postoji na srpskom)
aSchool of Electrical Engineering, Belgrade + Lola Institut, Belgrade
bLola institut, Beograd

e-adresa: maja.lutovac@li.rs, zoran.dimic@li.rs, stefan.mitr

Projekat

Razvoj uređaja za trening pilota i dinamičku simulaciju leta modernih borbenih aviona i to 3-osne centrifuge i 4-osnog uređaja za prostornu dezorijentaciju pilota (MPNTR - 35023)

Sažetak

(ne postoji na srpskom)
This paper presents the development of reconfigurable virtual environment for programming, control, simulation, and monitoring of multiple robots and its application in the process of education. During the development special attention is devoted to the fulfillment of the modularity, scalability, and openness that represent the basic requirements of reconfigurability. The reconfigurability of the virtual laboratory can be considered from two aspects: as a possibility of reconfiguring operating mode and as a possibility of reconfiguring virtual robots and virtual laboratory. It represents an integrated environment for programming, control, simulation and monitoring of multiple robots with continuous adjustment to the real laboratory environment and robots' usage. With the possibility to adjust the virtual environment in accordance with the students' foreknowledge and experience by combining different operating modes and virtual environments, from the educational viewpoint, it is expected that the proposed solution will improve the process of gaining knowledge.

Ključne reči

Reference

Bi, Z. M., Lang, S.Y. T., Verner, M., Orban, P. (2007) Development of reconfigurable machines. International Journal of Advanced Manufacturing Technology, 39(11-12): 1227-1251
Blank, D., Kumar, D., Meeden, L., Yanco, H. (2003) Pyro. Journal on Educational Resources in Computing, 3(4): 1-15
Carpin, S., Lewis, M., Wang, J., Balakirsky, S., Scrapper, C. (2007) USARSim: A robot simulator for research and education. u: IEEE International Conference on Robotics and Automation, Apr. 10-14, 2007, Roma, Italy, Proc of, pp. 1400-1405
Castellanos, S.A.R., Santana, L.H., Rubio, E., Santana, I., Santonja, C.R.A. (2006) Virtual and remote laboratory for robot manipulator control study. International Journal of Engineering Education, vol. 22, no. 4, pp. 702-710
Cui, L., Tso, F.P., di Yao,, Jia, W. (2012) WeFiLab: A Web-Based WiFi Laboratory Platform for Wireless Networking Education. IEEE Transactions on Learning Technologies, 5(4): 291-303
Depree, J., Gesswein, C. (2008) Robotic machining white paper project. Halcyon Development, Available: http://www.robotics.org/robotic-content.cfm/Robotics/Halcyon- Development-RIA/id/43
Dogmus, Z., Erdem, E., Patoglu, V. (2015) ReAct!: An Interactive Educational Tool for AI Planning for Robotics. IEEE Transactions on Education, 58(1): 15-24
Dunn, T.L., Wardhani, A. (2003) A 3D robot simulation for education. u: Proc. of the 1st international conference on Computer graphics and interactive techniques in Australasia and South East Asia, February 11 - 14, 2003, Melbourne, Victoria, Australia, pp. 277-278
Ferenc, G., Dimić, Z., Lutovac, M., Vidaković, J., Kvrgić, V. (2013) Open architecture platforms for the control of robotic systems and a proposed reference architecture model. Transactions of FAMENA, vol. 37, no. 1, pp. 89-100
Hanson, B., Culmer, P., Gallagher, J., Page, K., Read, E., Weightman, A., Levesley, M. (2009) ReLOAD: Real Laboratories Operated at a Distance. IEEE Transactions on Learning Technologies, 2(4): 331-341
Ionescu, C.M., Fabregas, E., Cristescu, S.M., Dormido, S., de Keyser, R. (2013) A Remote Laboratory as an Innovative Educational Tool for Practicing Control Engineering Concepts. IEEE Transactions on Education, 56(4): 436-442
Kim, C.S., Hong, K.S., Han, Y.S. (2006) Welding robot applications in shipbuilding industry: Off-Line programming, virtual reality simulation, and open architecture. u: Huat L.K. [ur.] Industrial Robotics: Programming, Simulation and Application, Ed. ARS/pIV, pp. 537-558
Koren, Y., Shpitalni, M. (2010) Design of reconfigurable manufacturing systems. Journal of Manufacturing Systems, 29(4): 130-141
Li, W., Red, E., Jensen, G., Evans, M. (2007) Reconfigurable Mechanisms for Application Control (RMAC): Applications. Computer-Aided Design and Applications, 4(1-4): 549-556
Lutovac, M., Ferenc, G., Kvrgić, V., Vidaković, J., Dimić, Z. (2012) Robot programming system based on L‐IRL programming language. Acta Technica Corviniensis - Bulletin of Engineering, vol. 2. pp. 27-30
Lutovac, M., Dimić, Z., Ferenc, G., Vidaković, J., Bućan, M. (2012) Virtual robot in distributed control system. u: 20. Telecommunications forum - TELFOR, Nov. 20-22, 2012, Belgrade, Serbia, Proc. of, in Serbian, pp. 1401-1404
Lutovac, M.M., Dimić, Z., Mitrović, S., Stepanović, A. (2015) Reconfigurable multi-robot virtual environment. u: Telecommunications Forum Telfor (TELFOR), 2015 23rd, Belgrade, pp. 954-957
Milutinović, D., Glavonjić, M., Slavković, N., Dimić, Z., Živanović, S., Kokotović, B., Tanović, Lj. (2011) Reconfigurable robotic machining system controlled and programmed in a machine tool manner. International Journal of Advanced Manufacturing Technology, vol 53, pp. 1217-1229
Milutinović, D., Slavković, N., Živanović, S., Glavonjić, M. (2014) Lowcost control and programming system for five-axis machining by articulated robots with 5 and 6 dof. u: 5th International Conference on Manufacturing Engineering ICMEN, Thessaloniki - Greece, Proc. of, pp. 133-142
Mitrović, S., Dimić, Z., Vidaković, J., Lutovac, M., Kvrgić, V. (2015) System for simulation and supervision of robotic cells. u: Proc. of 12th International Scientific Conference, Novi Sad, Serbia, Sept. 25-26
Pan, Z., Polden, J., Larkin, N., van Duin, S., Norrish, J. (2012) Recent progress on programming methods for industrial robots. Robotics and Computer-Integrated Manufacturing, 28(2): 87-94
Potkonjak, V., Vukobratović, M., Jovanović, K., Medenica, M. (2010) Virtual Mechatronic/Robotic laboratory – A step further in distance learning. Computers & Education, 55(2): 465-475
Potkonjak, V., Gardner, M., Callaghan, V., Mattila, P., Guetl, C., Petrović, V.M., Jovanović, K. (2016) Virtual laboratories for education in science, technology, and engineering: A review. Computers & Education, 95: 309-327
Slavković, N., Milutinović, D., Glavonjić, M. (2014) A method for off-line compensation of cutting force-induced errors in robotic machining by tool path modification. International Journal of Advanced Manufacturing Technology, vol. 70, pp. 2083-2096
Živanović, S., Dimić, Z., Slavković, N., Milutinović, D., Glavonjić, M. (2012) Configuring of virtual robot for machining and application in off-line programming and education. u: Proc. of 1st International Scientific Conference Conference on Mechanical Engineering Technologies and Applications COMETa, Jahorina, B&H, pp. 125-132