Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:[1]
  • citati u Google Scholaru:[=>]
  • posete u prethodnih 30 dana:2
  • preuzimanja u prethodnih 30 dana:2
članak: 1 od 1  
Telfor Journal
2017, vol. 9, br. 1, str. 26-31
jezik rada: engleski
vrsta rada: neklasifikovan
doi:10.5937/telfor1701026P


Model for detection and classification of DDoS traffic based on artificial neural network
(naslov ne postoji na srpskom)
University of Zagreb, Department of information and communication traffic, Faculty of Transport and Traffic Sciences, Zagreb, Croatia

e-adresa: dragan.perakovic@fpz.hr, marko.perisa@fpz.hr, ivan

Sažetak

(ne postoji na srpskom)
Detection of DDoS (Distributed Denial of Service) traffic is of great importance for the availability protection of services and other information and communication resources. The research presented in this paper shows the application of artificial neural networks in the development of detection and classification model for three types of DDoS attacks and legitimate network traffic. Simulation results of developed model showed accuracy of 95.6% in classification of pre-defined classes of traffic.

Ključne reči

ANN; DDoS; network traffic; network security

Reference

Abliz, M. (2011) Internet Denial of Service Attacks and Defense Mechanisms. Pittsburgh: University of Pittsburgh - Departmant of Computer Science
Alenezi, M., Reed, M. (2012) Methodologies for detecting DoS/DDoS attacks against network servers. u: Conference on Systems and Networks, pp. 92-98
Alexandru, G., Raj, S., Marc, R. (2012) Classification of UDP traffic for DDoS detection. u: LEET'12 Proceedings of the 5th USENIX conference on Large-Scale Exploits and Emergent Threats, pp. 7-7
Bošnjak, I. (2001) Telecommunication traffic (Telekomunikacijski promet 2). Zagreb: Faculty of transport and Traffic Sciences
CAIDA (2008) CAIDA: The cooperative association for internet data analysis. http://www.caida.org/, 01-Jan-2016
I.S.C. of Excellence (2010) UNB ISCX intrusion detection evaluation DataSet. http://www.unb.ca/research/iscx/dataset/iscx-IDS-dataset.html, 01-Jan-2016
Kale, M. (2014) DDOS Attack Detection Based on an Ensemble of Neural Classifier, Int. J Comput. Sci. Netw. Secur, vol. 14, no. 7, pp. 122-129
Karimazad, R., Faraahi, A. (2011) An anomaly-based method for DDoS attacks detection using RBF neural networks. u: International Conference on Network and Electronics Engineering, vol. 11, pp. 44-48
Kenig, R., Manor, D., Gadot, Z., Trauner, D. (2013) DDoS survival handbook. Radware
Nominum (2012) An introduction to DNS-based DDoS amplification attacks
Patrikakis, C., Masikos, M., Zouraraki, O. (2004) Distributed denial of service attacks. Internet Protoc. J, vol. 7, no. 4, pp. 13-36
Perakovic, D., Perisa, M., Cvitic, I., Husnjak, S. (2016) Artificial neuron network implementation in detection and classification of DDoS traffic. u: 2016 24th Telecommunications Forum (TELFOR), Institute of Electrical and Electronics Engineers (IEEE), str. 1-4
Preetha, G., Devi, B.S.K., Shalinie, S.M. (2014) Autonomous agent for DDoS attack detection and defense in an experimental testbed. Int. J. Fuzzy Syst, vol. 16, no. 4, pp. 520-528
Rossow, C. (2014) Amplification hell: Revisiting network protocols for DDoS abuse. u: 2014 Netw. Distrib. Syst. Secur. Symp., Proc, pp. 23-26, February
S. Institute (2011) Denial of service attacks and mitigation techniques: Real time implementation with detailed analysis
Saied, A., Overill, R.E., Radzik, T. (2014) Artificial neural networks in the detection of known and unknown DDoS attacks: Proof-of-concept. Commun. Comput Inf. Sci, vol. 430, pp. 300-320
Santanna, J.J., van Rijswijk-Deij, R., Hofstede, R., Sperotto, A., Wierbosch, M., Granville, L.Z., Pras, A. (2015) Booters — An analysis of DDoS-as-a-service attacks. u: 2015 IFIP/IEEE International Symposium on Integrated Network Management (IM), Institute of Electrical and Electronics Engineers (IEEE), str. 243-251
Thapngam, T., Yu, S., Zhou, W., Makki, S. K. (2014) Distributed Denial of Service (DDoS) detection by traffic pattern analysis. Peer-to-Peer Networking and Applications, 7(4): 346-358