Metrika članka

  • citati u SCindeksu: 0
  • citati u Google Scholaru:[=>]
  • posete u prethodnih 30 dana:12
  • preuzimanja u prethodnih 30 dana:9
članak: 1 od 1  
Food and Feed Research
2017, vol. 44, br. 1, str. 11-21
jezik rada: engleski
vrsta rada: pregledni članak
doi:10.5937/FFR1701011H

Creative Commons License 4.0
Pregled razvoja tehnika izolovanja biljnih proteina
Institut za prehrambene tehnologije, Novi Sad

e-adresa: tamara.dapcevic@fins.uns.ac.rs

Sažetak

Nove vrste biljnih proteina, kao što su oni izolovani iz široko rasprostranjenih izvora (trava) ili agro-industrijskih sporednih proizvoda i efluenata (pogače uljarica), će prema očekivanjima zameniti proteine animalnog porekla, iz razloga kao što su: veća efikasnost proizvodnje, smanjen uticaj na životni ciklus okoline i mogućnost zadovoljenja navika u ishrani i kulturoloških razlika potrošača. Iako poseduju raznoliku funkcionalnost (emulgujuće osobine, sposobnost obrazovanja pene, gelova, teksture proizvoda), primena proteina je ograničena usled činjenice da su njihove osobine veoma zavisne od njihove strukture i sastava, uticaja spoljašnje sredine (pH, jonska jačina rastvora, prisustvo mikro- i makro-molekula u prehrambenom sistemu), kao i metoda i uslova izolovanja. Cilj ovog rada je da pregled trenutnih tehnika izolovanja proteina iz biljnih sirovina, kao i uticaja metoda i uslova (pH, jonska jačina rastvora, temperatura rastvora za ekstrakciju, vreme ekstrakcije i dr.) izolovanja na osobine proteina (prinos, stepen čistoće, izgled, rastvorljivost, stepen denaturacije, efikasnost emulgovanja, i sl.). Primena novih tehnologija, kao što su ekstrakcija uz primenu ultrazvuka, tehnika elektro-aktivacije, kao i pristupa (ekstrakcija uz pomoć enzima) u cilju poboljšanja prinosa proteina ili funkcionalnosti bila je takođe tema ovog rada.

Ključne reči

izolat proteina; alkalna ekstrakcija; izoelektrična precipitacija; micelizacija; nove tehnologije

Reference

Aherne, F. X., Bowland, J. P., Hardin, R. T., Christian, R. G. (1976) Performance of myocardial and blood seral changes in pigs fed diets containing high or low erucic acid rapeseed oils. Canadian Journal of Animal Science, 56(2): 275-284
Arntfield, S.D., Murray, E.D. (1981) The Influence of Processing Parameters on Food Protein Functionality I. Differential Scanning Calorimetry as an Indicator of Protein Denaturation. Canadian Institute of Food Science and Technology Journal, 14(4): 289-294
Arntfield, S.D., Ismond, M.A.H., Murray, E.D. (1985) The Fate of Antinutritional Factors During the Preparation of a Fababean Protein Isolate using a Micellization Technique. Canadian Institute of Food Science and Technology Journal, 18(2): 137-143
Arntfield, S.D., Ismond, M.A.H., Murray, E.D. (1990) Thermal analysis of food proteins in relation to processing effects. u: Harwalkar V.R.; Ma C.Y. [ur.] Thermal Analysis of Foods, London: Elsevier, pp. 51-91
Badawy, I.H., Atta, B., Ahmed, W.M. (1994) Biochemical and toxicological studies on the effect of high and low erucic acid rapeseed oil on rats. Molecular Nutrition & Food Research, 38 (4); 402-411
Brand, T.S., Smith, N., Hoffman, L.C. (2007) Anti-nutritional factors in canola produced in the Western and Southern Cape areas of South Africa. South African Journal of Animal Science, 37 (1); 45-50
Chambal, B., Bergenståhl, B., Dejmek, P. (2012) Edible proteins from coconut milk press cake; one step alkaline extraction and characterization by electrophoresis and mass spectrometry. Food Research International, 47(2): 146-151
Chee, K.L., Ling, H.K., Ayob, M.K. (2012) Optimization of trypsin-assisted extraction, physico-chemical characterization, nutritional qualities and functionalities of palm kernel cake protein. LWT-Food Science and Technology, 46 (2); 419-427
Coustets, M., Teissié, J. (2016) The Use of Pulsed Electric Fields for Protein Extraction from Nanochloropsis and Chlorella. Singapore: Springer Nature, str. 405-408
Cumby, N., Zhong, Y., Naczk, M., Shahidi, F. (2008) Antioxidant activity and water-holding capacity of canola protein hydrolysates. Food Chemistry, 109(1): 144-148
Dapčević-Hadnađev, T., Hadnađev, M., Lazaridou, A., Moschakis, T., Biliaderis, C. (2016) Physicochemical properties of hemp (Cannabis sativa L.) protein isolates: Effects of isolation technique and conditions. u: International Congress FoodTech 2016: III International Congress Food Technology, Quality and Safety, and XVII International Symposium Feed Technology, Novi Sad 2016, Serbia, Book of Abstracts, Novi Sad, Serbia, p. 200
Eapen, K. E., Kalbag, S. S., Subrahmanyan, V. (1966) Key operations in the wet-rendering of peanut for the isolation of protein, oil and starch. Journal of the American Oil Chemists Society, 43(10): 585-589
Fenwick, G.R., Heaney, R.K., Mullin, W.J. (1982) Glucosinolates and their breakdown products in food and food plants. Crit Rev Food Sci Nutr, 18(2): 123-201
Fernández-Quintela, A., Macarulla, M. T., del Barrio, A. S., Martínez, J. A. (1997) Composition and functional properties of protein isolates obtained from commercial legumes grown in northern Spain. Plant Foods for Human Nutrition, 51(4): 331-341
Firatligil-Durmus, E., Evranuz, O. (2010) Response surface methodology for protein extraction optimization of red pepper seed (Capsicum frutescens). LWT - Food Science and Technology, 43(2): 226-231
Gerzhova, A., Mondor, M., Benali, M., Aider, M. (2015) A comparative study between the electro-activation technique and conventional extraction method on the extractability, composition and physicochemical properties of canola protein concentrates and isolates. Food Bioscience, 11: 56-71
Gerzhova, A., Mondor, M., Benali, M., Aider, M. (2015) Study of the functional properties of canola protein concentrates and isolates extracted by electro-activated solutions as non-invasive extraction method. Food Bioscience, 12: 128-138
Gerzhova, A., Mondor, M., Benali, M., Aider, M. (2016) Study of total dry matter and protein extraction from canola meal as affected by the pH, salt addition and use of zeta-potential/turbidimetry analysis to optimize the extraction conditions. Food Chemistry, 201: 243-252
Ghodsvali, A., Khodaparast, M.H. H., Vosoughi, M., Diosady, L.L. (2005) Preparation of canola protein materials using membrane technology and evaluation of meals functional properties. Food Research International, 38(2): 223-231
Hadnađev, M., Hadnađev-Dapčević, T., Dizdar, M., Nedeljković, N., Pojić, M. (2016) Antioxidant activity of hemp protein hydrolysates: Effect of protease type and hydrolysis degree. u: 18th World congress of food science and technology - Iufost 2016, Dublin, Ireland, Book of Abstracts, p. 1519
Ho, C.H., Cacace, J.E., Mazza, G. (2007) Extraction of lignans, proteins and carbohydrates from flaxseed meal with pressurized low polarity water. LWT-Food Science and Technology, 40 (9); 1637-1647
Jamdar, S.N., Rajalakshmi, V., Pednekar, M.D., Juan, F., Yardi, V., Sharma, A. (2010) Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitory activity of peanut protein hydrolysate. Food Chemistry, 121(1): 178-184
Karaca, A.C., Low, N., Nickerson, M. (2011) Emulsifying properties of canola and flaxseed protein isolates produced by isoelectric precipitation and salt extraction. Food Research International, 44(9): 2991-2998
Krause, J., Schultz, M., Dudek, S. (2002) Effect of extraction conditions on composition, surface activity and rheological properties of protein isolates from flaxseed (Linum usitativissimum L). Journal of the Science of Food and Agriculture, 82(9): 970-976
Li, Y., Jiang, B., Zhang, T., Mu, W., Liu, J. (2008) Antioxidant and free radical-scavenging activities of chickpea protein hydrolysate (CPH). Food Chemistry, 106(2): 444-450
Liener, I.E. (1994) Implications of antinutritional components in soybean foods. Critical Reviews in Food Science and Nutrition, 34(1): 31-67
López Octavio Paredes, Ordorica-Falomir, C. (1986) Production of safflower protein isolates: Composition, yield and protein quality. Journal of the Science of Food and Agriculture, 37(11): 1097-1103
Malomo, S.A., Aluko, R.E. (2015) A comparative study of the structural and functional properties of isolated hemp seed (Cannabis sativa L.) albumin and globulin fractions. Food Hydrocolloids, 43: 743-752
Moure, A., Sineiro, J., Domı́nguez, H. (2001) Extraction and functionality of membrane-concentrated protein from defatted Rosa rubiginosa seeds. Food Chemistry, 74(3): 327-339
Moure, A., Sineiro, J., Domínguez, H., Parajó, J.C. (2006) Functionality of oilseed protein products: A review. Food Research International, 39(9): 945-963
Mune, M.M.A., Minka, S.R., Mbome, I.L. (2008) Response surface methodology for optimisation of protein concentratepreparation from cowpea [Vigna unguiculata (L.) Walp]. Food Chemistry, 110(3): 735-741
Murray, E.D., Arntfield, S.D., Ismond, M.A.H. (1985) The Influence of Processing Parameters on Food Protein Functionality II. Factors Affecting Thermal Properties as Analyzed by Differential Scanning Calorimetry. Canadian Institute of Food Science and Technology Journal, 18(2): 158-162
Mwasaru, M.A., Muhammad, K., Bakar, J., Man, Y.B. (1999) Effects of isolation technique and conditions on the extractability, physicochemical and functional properties of pigeonpea (Cajanus cajan) and cowpea (Vigna unguiculata) protein isolates. I. Physicochemical properties. Food Chemistry, 67(4): 435-443
Papalamprou, E.M., Doxastakis, G.I., Biliaderis, C.G., Kiosseoglou, V. (2009) Influence of preparation methods on physicochemical and gelation properties of chickpea protein isolates. Food Hydrocolloids, 23(2): 337-343
Paredes-López, O., Ordorica-Falomir, C., Olivares-Vázquez, M.R. (1991) Chickpea Protein Isolates: Physicochemical, Functional and Nutritional Characterization. Journal of Food Science, 56(3): 726-729
Pickardt, C., Neidhart, S., Griesbach, C., Dube, M., Knauf, U., Kammerer, D.R., Carle, R. (2009) Optimisation of mild-acidic protein extraction from defatted sunflower (Helianthus annuus L.) meal. Food Hydrocolloids, 23(7): 1966-1973
Quanhong, L., Caili, F. (2005) Application of response surface methodology for extraction optimization of germinant pumpkin seeds protein. Food Chemistry, 92(4): 701-706
Rodrigues, I.M., Coelho, J.F.J., Carvalho, M. G.V.S. (2012) Isolation and valorisation of vegetable proteins from oilseed plants: Methods, limitations and potential. Journal of Food Engineering, 109(3): 337-346
Rodríguez-Ambriz, S. L., Martínez-Ayala, A. L., Millán, F., Dávila-Ortíz, G. (2005) Composition and Functional Properties of Lupinus campestris Protein Isolates. Plant Foods for Human Nutrition, 60(3): 99-107
Roselló-Soto, E., Barba, F.J., Parniakov, O., Galanakis, C.M., Lebovka, N., Grimi, N., Vorobiev, E. (2015) High Voltage Electrical Discharges, Pulsed Electric Field, and Ultrasound Assisted Extraction of Protein and Phenolic Compounds from Olive Kernel. Food and Bioprocess Technology, 8(4): 885-894
Rosenthal, A., Pyle, D., Niranjan, K., Gilmour, S., Trinca, L. (2001) Combined effect of operational variables and enzyme activity on aqueous enzymatic extraction of oil and protein from soybean. Enzyme and Microbial Technology, 28(6): 499-509
Sogi, D.S., Garg, S.K., Bawa, A.S. (2002) Functional Properties of Seed Meals and Protein Concentrates From Tomato-processing Waste. Journal of Food Science, 67(8): 2997-3001
Stegeman, D., Janssen, A.M., Helsper, J.P.F.G., van der Meer, I.M., van Kernebeek, H.R.J. (2010) Technologie en grondstoffen voor vleesvervangers en hoogwaardige eiwitten. Wageningen UR Food & Biobased Research, No. 1179
Tang, C-H., Wu, H., Yu, H-P., Li, L., Chen, Z., Yang, X-Q. (2006) Coagulation and gelation of soy protein isolates induced by microbial transglutaminase. Journal of Food Biochemistry, 30(1): 35-55
Tang, C., Ten, Z., Wang, X., Yang, X. (2006) Physicochemical and Functional Properties of Hemp ( Cannabis sativa L.) Protein Isolate. Journal of Agricultural and Food Chemistry, 54(23): 8945-8950
Tripathi, M.K., Mishra, A.S. (2007) Glucosinolates in animal nutrition: A review. Animal Feed Science and Technology, 132(1-2): 1-27
Tzeng, Y.M., Diosady, L.L., Rubin, L.J. (1988) Preparation of rapeseed protein isolates using ultrafiltration, precipitation and diafiltration. Canadian Institute of Food Science and Technology Journal, 21 (4); 419-424
Tzeng, Y., Diosady, L.L., Rubin, L.J. (1990) Production of Canola Protein Materials by Alkaline Extraction, Precipitation, and Membrane Processing. Journal of Food Science, 55(4): 1147-1151
van der Spiegel, M., Noordam, M.Y., van der Fels-Klerx, H.J. (2013) Safety of Novel Protein Sources (Insects, Microalgae, Seaweed, Duckweed, and Rapeseed) and Legislative Aspects for Their Application in Food and Feed Production. Comprehensive Reviews in Food Science and Food Safety, 12(6): 662-678
Vioque, J., Sánchez-Vioque, R., Clemente, A., Pedroche, J., Millán, F. (2000) Partially hydrolyzed rapeseed protein isolates with improved functional properties. Journal of the American Oil Chemists' Society, 77(4): 447-450
Wanasundara, P. K. J. P. D., Shahidi, F. (1996) Optimization of Hexametaphosphate-Assisted Extraction of Flaxseed Proteins Using Response Surface Methodology. Journal of Food Science, 61(3): 604-607
Wani, A.A., Kaur, D., Ahmed, I., Sogi, D.S. (2008) Extraction optimization of watermelon seed protein using response surface methodology. LWT-Food Science and Technology, 41 (8); 1514-1520
Xu, L., Diosady, L. (2002) Removal of phenolic compounds in the production of high-quality canola protein isolates. Food Research International, 35(1): 23-30
Yoshie-Stark, Y., Wada, Y., Wäsche, A. (2008) Chemical composition, functional properties, and bioactivities of rapeseed protein isolates. Food Chemistry, 107(1): 32-39
Zhu, K., Zhou, H., Qian, H. (2006) Antioxidant and free radical-scavenging activities of wheat germ protein hydrolysates (WGPH) prepared with alcalase. Process Biochemistry, 41(6): 1296-1302
Zhu, K., Sun, X., Zhou, H. (2009) Optimization of ultrasound-assisted extraction of defatted wheat germ proteins by reverse micelles. Journal of Cereal Science, 50(2): 266-271