članak: 1 od 1  
Vojnosanitetski pregled
2010, vol. 67, br. 5, str. 357-363
jezik rada: srpski
originalan članak
doi:10.2298/VSP1005357L

Dinamička magnetna rezonanca likvorskog toka unutar cerebralnog akvedukta različitim FISIP 2D sekvencama
aUniverzitet u Novom Sadu, Medicinski fakultet, Institut za onkologiju
bKlinički centar Vojvodine, Centar za radiologiju, Novi Sad
cMinistarstvo odbrane Republike Srbije, Beograd

e-adresa: milos.a.lucic@gmail.com

Sažetak

Uvod/Cilj. Veliki broj danas raspoloživih radioloških metoda, uključujući kompjuterizovanu tomografiju (KT) i magnetnu rezonancu (MR) ima izvanredan potencijal vizualizacije i delineacije morfologije likvorskih prostora. Cilj rada bio je da se utvrde mogućnosti dve različito akvirirane FISP (fast imaging with steady state precession) 2D MR sekvence u proceni intenziteta likvorskog toka kroz normalno prohodan cerebralni akvedukt. Metode. Kod 68 zdravih ispitanika - volontera načinjen je pregled mozga na MR uređaju od 1,5 T uz dodatne elektrokardiografski retrospektivno gejtovane FISP 2D sekvence (prvom, koja je sadržana u standarnom softverskom paketu, sa sledećim tehničkim parametrima: TR 40, TE 12, FA 17, Matrix: 192 × 256, Acq 1, i drugom, eksperimentalno razvijenom od strane istraživačkog tima: TR 30, TE 12, FA 70, Matrix: 192 × 256, Acq 1) pozicioniranih u mediosagitalnoj i normalnoj ravni, naknadno rekonstruisanih u kinematografskom (CINE) formatu zatvorene petlje. Rezultati. Pregled 2D MR pokazao je normalnu morfologiju mozga sa održanom prohodnošću akvedukta kod svih 68 zdravih volontera. Kinematografske MR studije dobijene obema FISP 2D sekvencama u mediosagitalnoj ravni demonstrirale su mogućnost vizualizacije likvorskog protoka kroz akvedukt, ali je u normalnoj ravni procena intraakveduktalnog likvorskog kretanja bila moguća isključivo eksperimentalno definisanom FISP 2D sekvencom (TR 30, FA 70). Zaključak. Promene tehničkih parametara CINE MR studije načinjene upotrebom FISP 2D (TR 30, FA 70) sekvence u normalnoj ravni pokazuju značajno veće mogućnosti u proceni intenziteta intraakveduktnog likvorskog toka.

Ključne reči

Reference

Abbott, J.N. (2004) Evidence for bulk flow of brain interstitial fluid: Significance for physiology and pathology. Neurochemistry international, 45(4): 545-52
Alperin, N.J., Lee, S.H., Loth, F., Raksin, P.B., Lichtor, T. (2000) MR-Intracranial pressure (ICP): A method to measure intracranial elastance and pressure noninvasively by means of MR imaging: baboon and human study. Radiology, 217(3): 877-85
Arakeri, J.H. (2000) Bernoulli s equation. Resonance, 5(8), str. 54-71
Atlas, S.W., Mark, A.S., Fram, E.K. (1988) Aqueductal stenosis: Evaluation with gradient-echo rapid MR imaging. Radiology, 169(2): 449-53
Axel, L., Dougherty, L. (1989) MR imaging of motion with spatial modulation of magnetization. Radiology, 171(3): 841-5
Balédent, O., Gondry-Jouet, C., Meyer, M., de Marco, G., le Gars, D., Henry-Feugeas, M., Idy-Peretti, I. (2004) Relationship between cerebrospinal fluid and blood dynamics in healthy volunteers and patients with communicating hydrocephalus. Investigative radiology, 39(1): 45-55
Bergstrand, G., Bergstrom, M., Nordell, B., Stahlberg, F., Ericsson, A., Hemmingsson, A., Sperber, G., Thuomas, K.A., Jung, B. (1985) Cardiac gated MR imaging of cerebrospinal fluid flow. Journal of computer assisted tomography, 9(6): 1003-6
Bhadelia, R.A., Bogdan, A.R., Wolpert, S.M. (1995) Analysis of cerebrospinal fluid flow waveforms with gated phase-contrast MR velocity measurements. American journal of neuroradiology, 16(2): 389-400
Bradley, W.G., Quencer, R.M. (1999) Hydrocephalus and cerebrospinal fluid flow. u: Stark D.D., Bradley W.G., (ur.) Magnetic resonance imaging, St Louis: Mosby, str. 1483-507
Edelman, R.R., Wedeen, V.J., Davis, K.R., Widder, D., Hahn, P., Shoukimas, G., Brady, T.J. (1986) Multiphasic MR imaging: a new method for direct imaging of pulsatile CSF flow. Radiology, 161(3): 779-83
Enzmann, D.R., Pelc, N.J. (1991) Normal flow patterns of intracranial and spinal cerebrospinal fluid defined with phase-contrast cine MR imaging. Radiology, 178(2): 467-74
Enzmann, D.R., Rubin, J.B., DeLaPaz, R., Wright, A. (1986) Cerebrospinal fluid pulsation: benefits and pitfalls in MR imaging. Radiology, 161(3): 773-8
Feinberg, D.A. (1992) Modern concepts of brain motion and cerebrospinal fluid flow. Radiology, 185(3): 630-2
Feinberg, D.A., Mark, A.S. (1987) Human brain motion and cerebrospinal fluid circulation demonstrated with MR velocity imaging. Radiology, 163(3): 793-9
Greitz, D., Hannerz, J. (1996) A proposed model of cerebrospinal fluid circulation: observations with radionuclide cisternography. American journal of neuroradiology, 17(3): 431-8
Greitz, D. (1993) Cerebrospinal fluid circulation and associated intracranial dynamics A radiologic investigation using MR imaging and radionuclide cisternography. Acta radiologica. Supplementum,, 386: 1-23
Haacke, E.M., Wielopolski, P.A., Tkach, J.A., Modic, M.T. (1990) Steady-state free precession imaging in the presence of motion: application for improved visualization of the cerebrospinal fluid. Radiology, 175(2): 545-52
Johanson, C.E., Duncan, J.A., Klinge, P.M., Brinker, T., Stopa, E.G., Silverberg, G.D. (2008) Multiplicity of cerebrospinal fluid functions: New challenges in health and disease. Cerebrospinal fluid research, 5: 10
Johnston, I., Teo, C. (2000) Disorders of CSF hydrodynamics. Child's nervous system, 16(10-11): 776-99
Lučić, M.A. (2004) Dynamic magnetic resonance examination of the cerebrospinal fluid disorders. Novi Sad: University School of Medicine, dissertation, Serbian
Luetmer, P.H., Huston, J., Friedman, J.A., Dixon, G.R., Petersen, R.C., Jack, C.R., McClelland, R.L., Ebersold, M.J. (2002) Measurement of cerebrospinal fluid flow at the cerebral aqueduct by use of phase-contrast magnetic resonance imaging: technique validation and utility in diagnosing idiopathic normal pressure hydrocephalus. Neurosurgery, 50(3): 534-43; discussion 543-4
Markl, M., Leupold, J., Bieri, O., Scheffler, K., Hennig, J. (2005) Double average parallel steady-state free precession imaging: optimized eddy current and transient oscillation compensation. Magnetic resonance in medicine, 54(4): 965-74
Markl, M., Pelc, N.J. (2004) On flow effects in balanced steady-state free precession imaging: pictorial description, parameter dependence, and clinical implications. Journal of magnetic resonance imaging, 20(4): 697-705
McCormack, E.J., Egnor, M.R., Wagshul, M.E. (2007) Improved cerebrospinal fluid flow measurements using phase contrast balanced steady-state free precession. Magnetic resonance imaging, 25(2): 172-82
Naidich, T.P., Altman, N.R., Gonzalez-Arias, S.M. (1993) Phase contrast cine magnetic resonance imaging: normal cerebrospinal fluid oscillation and applications to hydrocephalus. Neurosurgery clinics of North America, 4(4): 677-705
Nitz, W.R., Bradley, W.G., Watanabe, A.S., Lee, R.R., Burgoyne, B., Sullivan, O.R.M., Herbst, M.D. (1992) Flow dynamics of cerebrospinal fluid: assessment with phase-contrast velocity MR imaging performed with retrospective cardiac gating. Radiology, 183(2): 395-405
Njemanze, P.C., Beck, O.J. (1989) MR-gated intracranial CSF dynamics: Evaluation of CSF pulsatile flow. Am J Neuroradiol, 10: 77-81
Overall, W.R., Nishimura, D.G., Hu, B.S. (2002) Fast phase-contrast velocity measurement in the steady state. Magnetic resonance in medicine, 48(5): 890-8
Parizel, P.M., van den Hauwe, L., van Goethem, J.W., van Riet, B., ee Shepper, A.M. (1993) CSF flow assessment by phase-contrast MRI. Neuroradiology, 35(Suppl 1): 47
Quencer, R.M. (1992) Intracranial CSF flow in pediatric hydrocephalus: evaluation with cine-MR imaging. American journal of neuroradiology / AJNR, 13(2): 601-8
Redzic, Z.B., Preston, J.E., Duncan, J.A., Chodobski, A., Szmydynger-Chodobska, J. (2005) The choroid plexus-cerebrospinal fluid system: from development to aging. Current topics in developmental biology, 71: 1-52
Robinson, R.O. (1993) Radiological and other investigative techniques. u: Schurr CH, Polkey CE. (ur.) Hydrocephalus, Oxford: Oxford University Press, p. 119-38
Scheffler, K., Lehnhardt, S. (2003) Principles and applications of balanced SSFP techniques. European radiology, 13(11): 2409-18
Spraggins, T.A. (1990) Wireless retrospective gating: Application to cine cardiac imaging. Magn Reson Med, 8: 676-80