Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:4
  • preuzimanja u poslednjih 30 dana:0
članak: 1 od 1  
Vojnotehnički glasnik
2011, vol. 59, br. 4, str. 62-78
jezik rada: engleski
vrsta rada: naučni članak
doi:10.5937/vojtehg1104062V


Emulgovanje primenom mikroporoznih membrana
Chemical Engineering Department, Loughborough University, United Kingdom + Vinča Institute of Nuclear Sciences, Belgrade

e-adresa: gtvladis@rcub.bg.ac.rs

Sažetak

Pri membranskom emulgovanju se čista disperzna faza ili gruba emulzija propuštaju kroz mikroporoznu membranu u kontinualnu fazu pri čemu se usled nemešljivosti dve faze, na površini membrane formiraju kapi disperzne faze. Ove kapi se odnose sa površine membrane recirkulacijom kontinualne faze iznad membrane u unakrsnom toku, mešanjem kontinualne faze ili primenom dinamičke membrane, koja može biti rotirajuća ili vibraciona. Za emulgovanje se najčešće koristi membrana od mikroporoznog stakla proizvedena procesom spinodalne dekompozicije u rastopljenoj smeši Japanskog vulkanskog pepela pod nazivom 'Shirasu', krečnjaka i boroksida. U poslednje vreme se sve više koriste mikrosita od nikla proizvedena primenom fotolitografije i galvanskog niklovanja i mikrosita od silicijum nitrida, proizvedena reaktivnim jonskim nagrizanjem. Prednost mikrosita u odnosu na staklene membrane je u tome što omogućavaju veće transmembranske flukseve i što se manje prljaju zbog pravih kratkih pora. U odnosu na klasično emulgovanje u emulgatorima visokog pritiska i rotor-stator uređajima, pri membranskom emulgovanju se može precizno kontrolisati srednja veličina kapi u širokom opsegu a zanemarljivo mala količina energije se rasipa u obliku toplote. Veličina kapi je prvenstveno definisana veličinom pora, ali zavisi i od kvašljivosti membrane, sastava emulzije, napona smicanja na površini membrane, transmembranskog pritiska, itd.

Ključne reči

membransko emulgovanje; mikrosito; porozna staklena Shirasu membrane

Reference

Abrahamse, A.J., van Lierop, R., van der Sman, R.G.M., van der Padt, A., Boom, R.M. (2002) Analysis of droplet formation and interactions during cross-flow membrane emulsification. Journal of Membrane Science, 204(1-2): 125-137
Abrahamse, A.J., van Padt, A., Boom, R.M., de Heij, W.B.C. (2001) Process fundamentals of membrane emulsification: simulation with CFD. AIChE Journal, 47(6), 1285-1291
Altenbach-Rehm, J., Schubert, H., Suzuki, K. (2002) Premix-Membranemulgieren mittels hydrophiler und hydrophober PTFE-Membranen zur Herstellung von O/W-Emulsionen mit enger Tropfengrößenverteilung. Chem. Ing. Tech, 74, str. 587-588
Brans, G., Kromkamp, J., Pek, N., Gielen, J., Heck, J., van Rijn, C.J.M., van der Sman, R., Schron, C.G.P.H., Boom, R.M. (2006) Evaluation of microsieve membrane design. Journal of Membrane Science, 278(1-2): 344-348
Charcosset, C., Limayem, I., Fessi, H. (2004) The membrane emulsification process - a review. Journal of Chemical Technology and Biotechnology, 79(3), 209-218
Christov, N.C., Danov, K.D., Danova, D.K., Kralchevsky, P.A. (2008) The drop size in membrane emulsification determined from the balance of capillary and hydrodynamic forces. Langmuir, 24(4): 1397-410
Deluca, G., Dimaio, F., Direnzo, A., Drioli, E. (2008) Droplet detachment in cross-flow membrane emulsification: Comparison among torque- and force-based models. Chemical Engineering and Processing: Process Intensification, 47(7): 1150-1158
Dowding, P.J., Goodwin, J.W., Vincent, B. (2001) Production of porous suspension polymer beads with a narrow size distribution using a cross-flow membrane and a continuous tubular reactor. Colloid. Surf. A, 180, str. 310-309
Dragosavac, M.M., Sovilj, M.N., Kosvintsev, S.R., Holdich, R.G., Vladisavljevic, G.T. (2008) Controlled production of oil-in-water emulsions containing unrefined pumpkin seed oil using stirred cell membrane emulsification. Journal of Membrane Science, vol. 322, br. 1, str. 178-188
Egidi, E., Gasparini, G., Holdich, R.G., Vladisavljević, G.T., Kosvintsev, S.R. (2008) Membrane emulsification using membranes of regular pore spacing: Droplet size and uniformity in the presence of surface shear. Journal of Membrane Science, 323(2): 414-420
Gijsbertsen-Abrahamse, A. (2004) Status of cross-flow membrane emulsification and outlook for industrial application. Journal of Membrane Science, 230(1-2): 149-159
Hao, D., Gong, F., Hu, G., Zhao, Y., Lian, G., Ma, G., Su, Z. (2008) Controlling Factors on Droplets Uniformity in Membrane Emulsification: Experiment and Modeling Analysis. Industrial & Engineering Chemistry Research, 47(17), 6418-6425
Higashi, S., Setoguchi, T. (2000) Hepatic arterial injection chemotherapy for hepatocellular carcinoma with epirubicin aqueous solution as numerous vesicles in iodinated poppy-seed oil microdroplets: clinical application of water-in-oil-in-water emulsion prepared using a membrane emu. Advanced drug delivery reviews, 45(1): 57-64
Holdich, R., Kosvintsev, S., Cumming, I., Zhdanov, S. (2006) Pore design and engineering for filters and membranes. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, 364(1838): 161-74
Holdich, R.G., Dragosavac, M.M., Vladisavljević, G.T., Kosvintsev, S.R. (2010) Membrane Emulsification with Oscillating and Stationary Membranes. Industrial & Engineering Chemistry Research, 49(8): 3810-3817
Joscelyne, S.M., Tragardh, G. (2000) Membrane emulsification: A literature review. Journal of Membrane Science, 169(1): 107
Karbstein, H., Schubert, H. (1995) Developments in the continuous mechanical production of oil-in-water macro-emulsions. Chemical Engineering and Processing, 34,(3): 205
Kawakatsu, T., Kikuchi, Y., Nakajima, M. (1997) Regular-sized cell creation in microchannel emulsification by visual microprocessing method. Journal of the American Oil Chemists Society, 74(3): 317
Kobayashi, I., Mukataka, S., Nakajima, M. (2004) CFD simulation and analysis of emulsion droplet formation from straight-through microchannels. Langmuir, 20(22): 9868-77
Kobayashi, I., Nakajima, M., Mukataka, S. (2003) Preparation characteristics of oil-in-water emulsions using differently charged surfactants in straight-through microchannel emulsification. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 229(1-3), 33-41
Koltuniewicz, A.B., Field, R.W., Arnot, T.C. (1995) Cross-flow and dead-end microfiltration of oily-water emulsion. Part I: Experimental study and analysis of flux decline. Journal of Membrane Science, 102: 193-207
Kosvintsev, S.R., Gasparini, G., Holdich, R.G., Cumming, I.W., Stillwell, M.T. (2005) Liquid-Liquid Membrane Dispersion in a Stirred Cell with and without Controlled Shear. Industrial & Engineering Chemistry Research, 44(24), 9323-9330
Kosvintsev, S.R., Gasparini, G., Holdich, R.G. (2008) Membrane emulsification: Droplet size and uniformity in the absence of surface shear. Journal of Membrane Science, 313(1-2): 182-189
Kuiper, S., van Rijn, C., Nijdam, W., Elwenspoek, M. (1998) Development and applications of very high flux microfiltration membranes. Journal of Membrane Science, 150(1): 1-8
Kukizaki, M. (2009) Shirasu porous glass (SPG) membrane emulsification in the absence of shear flow at the membrane surface: Influence of surfactant type and concentration, viscosities of dispersed and continuous phases, and transmembrane pressure. Journal of Membrane Science, 327(1-2): 234-243
Kukizaki, M., Nakashima, T. (2004) Acid Leaching Process in the Preparation of Porous Glass Membranes from Phase-separated Glass in the Na2O-CaO-MgO-Al2O3-B2O3-SiO2 System. Membrane, 29(5): 301-308
Kukizaki, M., Wada, T. (2008) Effect of the membrane wettability on the size and size distribution of microbubbles formed from Shirasu-porous-glass (SPG) membranes. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 317(1-3), 146-154
Kukizaki, M., Goto, M. (2007) Preparation and characterization of a new asymmetric type of Shirasu porous glass (SPG) membrane used for membrane emulsification. Journal of Membrane Science, 299(1-2): 190-199
Kukizaki, M. (2010) Large-scale production of alkali-resistant Shirasu porous glass (SPG) membranes: Influence of ZrO2 addition on crystallization and phase separation in Na2O-CaO-Al2O3-B2O3-SiO2 glasses; and alkali durability and pore morphology of the membrane. Journal of Membrane Science, 360(1-2): 426-435
Lambrich, U., Vladisavljevic, G.T. (2004) Emulsification using microstructured systems. Chem. Ing. Tech., 76(4): 376-383
Lub, J., Nijssen, W.P., Pikkemaat, J.A., Stapert, H.R. (2006) Preparation of monodisperse polymer particles and capsules by ink-jet printing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 289(1-3): 96-104
Meng, T., Xie, R., Chen, Y., Cheng, C., Li, P., Ju, X., Chu, L. (2010) A thermo-responsive affinity membrane with nano-structured pores and grafted poly(N-isopropylacrylamide) surface layer for hydrophobic adsorption. Journal of Membrane Science, 349(1-2): 258-267
Nagata, S. (1975) Mixing-principles and applications. John Wiley & sons
Nakashima, T., Shimizu, M. (1986) Porous glass from calcium alumino boro-silicate glass. Ceramics, vol. 21, str. 408
Nakashima, T., Shimizu, M., Kukizaki, M. (1991) Membrane emulsification by microporous glass. Key Eng. Mater, 61-62, str. 513-516
Nakashima, T., Shimizu, M., Kukizaki, M. (1993) Effect of surfactant on production of monodispersed O/W emulsion in membrane emulsification. Kag. Kog. Ronbunshu, 19(6): 991-997
Nazir, A., Schroën, K., Boom, R. (2011) High-throughput premix membrane emulsification using nickel sieves having straight-through pores. J. Membr. Sci, in press
Nazir, A., Schroën, K., Boom, R. (2010) Premix emulsification: A review. Journal of Membrane Science, 362(1-2): 1-11
Olson, F., Hunt, C.A., Szoka, F.C., Vail, W.J., Papahadjopoulos, D. (1979) Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes. Biochimica et biophysica acta, 557(1): 9-23
Park, S.H., Yamaguchi, T., Nakao, S. (2001) Transport mechanism of deformable droplets in microfiltration of emulsions. Chemical Engineering Science, 56(11), 3539-3548
Rayner, M., Traegardh, G., Traegardh, C. (2005) The impact of mass transfer and interfacial expansion rate on droplet size in membrane emulsification processes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 266(1-3): 1-17
Rayner, M., Trägårdh, G., Trägårdh, C., Dejmek, P. (2004) Using the Surface Evolver to model droplet formation processes in membrane emulsification. Journal of colloid and interface science, 279(1): 175-85
Rayner, M., Tragardh, G. (2002) Membrane emulsification modeling: how can we get from characterization to design?. Desalination, 145(1-3), 165-172
Schadler, V., Windhab, E.J. (2006) Continuous membrane emulsification by using a membrane system with controlled pore distance. Desalination, 189(1-3), 130-135
Schadler, V., Windhab, E.J. (2004) Continuous membrane emulsification by rotating micromembranes with defined pore separations. Chemie Ingenieur Technik, 76(9), 1392
Schroder, V., Behrend, O., Schubert, H. (1998) Effect of dynamic interfacial tension on the emulsification process using microporous, ceramic membranes*1. Journal of Colloid and Interface Science, 202(2): 334
Shimoda, M., Miyamae, H., Nishiyama, K., Yuasa, T., Noma, S., Igura, N. (2011) Swirl-flow membrane emulsification for high throughput of dispersed phase flux through shirasu porous glass (SPG) membrane. Journal of Chemical Engineering of Japan, 44(1-3), 1-6
Surh, J., Jeong, Y.G., Vladisavljevic, G.T. (2008) On the preparation of lecithin-stabilized oil-in-water emulsions by multi-stage premix membrane emulsification. J. Food Eng., vol. 89, br. 2, str. 164-170
Suzuki, K., Fujiki, I., Hagura, Y. (1999) Preparation of high concentration of O/W and W/O emulsions by the membrane phase inversion emulsification using PTFE membranes. Food Sci. Technol. Int. Tokyo, 5, str. 234-238
Suzuki, K., Shuto, I., Hagura, Y. (1996) Characteristics of the membrane emulsification method combined with preliminary emulsification for preparing corn oil-in-water emulsions. Food Science and Technology International, Tokyo, 2(1): 43-47
Teh, S., Lin, R., Hung, L., Lee, A.P. (2008) Droplet microfluidics. Lab on a chip, 8(2): 198-220
Timgren, A., Traegaardh, G., Traegaardh, C. (2010) A model for drop size prediction during cross-flow emulsification. Chemical Engineering Research and Design, 88(2), 229-238
van der Graaf, S., Schroën, C.G.P.H., van der Sman, R.G.M., Boom, R.M. (2004) Influence of dynamic interfacial tension on droplet formation during membrane emulsification. Journal of colloid and interface science, 277(2): 456-63
van Rijn, C., van der Wekken, M., Nijdam, W., Elwenspoek, M. (1997) Deflection and maximum load of microfiltration membrane sieves made with silicon micromachining. Journal of Microelectromechanical Systems, 6(1): 48-54
Vladisavljevic, G., Kobayashi, I., Nakajima, M., Williams, R., Shimizu, M., Nakashima, T. (2007) Shirasu Porous Glass membrane emulsification: Characterisation of membrane structure by high-resolution X-ray microtomography and microscopic observation of droplet formation in real time. Journal of Membrane Science, 302(1-2): 243-253
Vladisavljevic, G.T., Mcclements, J.D. (2010) Modification of interfacial characteristics of monodisperse droplets produced using membrane emulsification by surfactant displacement and/or polyelectrolyte electrostatic deposition. Colloid. Surf. A, vol. 364, br. 1-3, str. 123-131
Vladisavljević, G.T., Schubert, H. (2003) Preparation of emulsions with a narrow particle size distribution using microporous alpha-alumina membranes. J. Dispersion Sci. Technol., 24(6): 811-819
Vladisavljević, G.T., Shimizu, M., Nakashima, T. (2005) Permeability of hydrophilic and hydrophobic Shirasu-porous-glass (SPG) membranes to pure liquids and its microstructure. J. Membr. Sci., 250(1-2): 69-77
Vladisavljević, G.T., Schubert, H. (2002) Preparation and analysis of oil-in-water emulsions with a narrow droplet size distribution using Shirasu-porous-glass (SPG) membranes. Desalination, 144(1-3): 167-172
Vladisavljević, G.T., Lambrich, U., Nakajima, M., Schubert, H. (2004) Production of O/W emulsions using SPG membranes, ceramic alpha-aluminium oxide membranes, microfluidizer and a silicon microchannel plate - a comparative study. Colloid. Surf. A, 232(2-3): 199-207
Vladisavljević, G.T., Schubert, H. (2003) Influence of process parameters on droplet size distribution in SPG membrane emulsification and stability of prepared emulsion droplets. J. Membr. Sci., 225(1-2): 15-23
Vladisavljević, G.T., Williams, R.A. (2006) Manufacture of large uniform droplets using rotating membrane emulsification. J. Colloid Interface Sci., 299(1): 396-402
Vladisavljević, G.T., Shimizu, M., Nakashima, T. (2004) Preparation of monodisperse multiple emulsions at high production rates by multi-stage premix membrane emulsification. Journal of Membrane Science, 244(1-2): 97-106
Vladisavljević, G.T., Shimizu, M., Nakashima, T. (2006) Production of multiple emulsions for drug delivery systems by repeated SPG membrane homogenization: Influence of mean pore size, interfacial tension and continuous phase viscosity. J. Membr. Sci., 284(1-2): 373-383
Vladisavljević, G.T., Surh, J., McClements, JD. (2006) Effect of emulsifier type on droplet disruption in repeated Shirasu porous glass membrane homogenization. Langmuir, 22(10): 4526-4533
Wagdare, N.A., Marcelis, A.T.M., Ho, B.O., Boom, R.M., van Rijn, C.J.M. (2010) High throughput vegetable oil-in-water emulsification with a high porosity micro-engineered membrane. Journal of Membrane Science, 347(1-2): 1-7
Williams, R.A., Peng, S.J., Wheeler, D.A., Morley, N.C., Taylor, D., Whalley, M., Houldsworth, D.W. (1998) Controlled production of emulsions using a crossflow membranepart II: Industrial scale manufacture. Chemical Engineering Research and Design, 76(8): 902
Yasuda, M., Goda, T., Ogino, H., Glomm, W.R., Takayanagi, H. (2010) Preparation of uniform monomer droplets using packed column and continuous polymerization in tube reactor. Journal of colloid and interface science, 349(1): 392-401
Yuan, Q., Williams, R.A., Aryanti, N. (2010) Innovations in high throughput manufacturing of uniform emulsions and capsules. Advanced Powder Technology, 21(6), 599-608
Zhu, J., Barrow, D. (2005) Analysis of droplet size during crossflow membrane emulsification using stationary and vibrating micromachined silicon nitride membranes. Journal of Membrane Science, 261(1-2): 136-144