- citati u SCIndeksu: 0
- citati u CrossRef-u:0
- citati u Google Scholaru:[
]
- posete u poslednjih 30 dana:10
- preuzimanja u poslednjih 30 dana:8
|
|
2019, vol. 67, br. 4, str. 768-789
|
Modeliranje kretanja projektila u lansirnoj cevi
Modeling the movement of a missile in the tubular guide of the starting installation
Ključne reči: raketni projektil; pokretni lanser; elastični model; lansirna cev; prostorni presek kretanja; sile interakcije; uglovi vektora; brzine centra mase; uglovi osovine projektila
Keywords: missile launcher; movable launcher; elastic model; launching tube; spatial portion of movement; interaction forces; angles of vectors; center of mass velocities; projectile axis angles
Sažetak
U ovom radu su predstavljeni proračunski i matematički modeli prostornog kretanja projektila sa centrirajućim prstenom i vodećim prstenom na telu u tankozidnoj lansirnoj cevi, koja je fiksirana za dva stabilna nosača i opremljena spiralnim vijkom. Prilikom modelovanja uzima se u obzir interakcija projektila sa unutrašnjom površinom lansirne cevi u mestima kontakta centrirajućeg prstena sa vodištem cevi. Sila normalne reakcije unutrašnje površine lansirne cevi se izračunava kao reakcija na elastičnu deformaciju cevi koja je izazvana uobičajenim pomeranjem centrirajućeg prstena u mestu kontakta sa vodištem lansirne cevi. U ovom slučaju vodište lansirne cevi se razmatra kao elastična tankozida čaura. U cilju proračuna vrednosti koeficijenta krutosti čaure, koristi se metoda konačnih elemenata, implementirana u softverskom paketu ANSYS Mechanical. Translaciona komponenta kretanja projektila istražuje se na osnovu teoreme središta kretanja mase, a rotaciona komponenta na osnovu Lagrangeovih jednačina druge vrste. Generalizovani parametri rotacionog kretanja su uglovi okretanja brzine Ps i visine th, ugao napada a, ugao klizanja b i ugao rotacije projektila oko uzdužne ose ph. Aerodinamički ugao nagiba ga se izračunava iz prelaznih formula za usvojene koordinatne sisteme. Ugao skretanja brzine Ps, visine th, aerodinamički ugao nagiba ga i prvi derivati ovih uglova pretvaraju se u uglove skretanja ps i visine y ose projektila i njihove derivate u početnom koordinatnom sistemu. U radu su takođe prikazani rezultati proračuna nekih od navedenih uglova, kao i uticaj sile na centrirujući prsten u mestu kontakta projektila sa vodištem lansirne cevi.
Abstract
The paper presents computational and mathematical model of the spatial motion of a rocket with centering bulges and a pin on the body in a thin walled tubular guide mounted on two fixed supports and equipped with a screw groove. The models take into account the interaction of the projectile with the inner surface of the guide tube at the locations of the drive pin and the centering bulge. The strength of the normal reaction of the inner surface of the guide is found as a reaction to the elastic deformation of the pipe caused by normal to its inner surface displacements of the centering thickening at the point of contact with the guide. In this case, the tubular guide is considered as an elastic thinwalled shell. To calculate the values of the shell stiffness coefficient along its length, the finite element method implemented in the ANSYS Mechanical software package is used. The translational component of the projectile motion is investigated on the basis of the theorem on the motion of the center of mass. The rotational component is investigated on the basis of the Lagrange equations of the second kind. The generalized parameters of the rotational motion are the yaw Ps and pitch th angles, the angle of attack a, the angle of slip b, and the angle of rotation of the projectile around the longitudinal axis ph. The aerodynamic angle of heel ga is found from the transition formulas for the adopted coordinate systems. The yaw velocity angle Ps, the pitch velocity angle th, and the aerodynamic roll angle ga as well as the first time derivatives of these angles are converted into the yaw angles ps and pitch y of the projectile axis and their derivatives in the starting coordinate system.
|
|
|
Reference
|
|
Antunevich, A.L., Il'jov, I.G., Goncharenko, V.P., Mironov, D.N. (2017) Application of mathematical models for the analysis of complex mechanical system undergoing heterogeneous variable actions / Primenenie matematičeskoj modeli dlâ analiza složnoj mehaničeskoj sistemy, podveržennoj neodnorodnym peremennym vozdejstviâm. Theoretical and applied mechanics, 32, pp. 207-213
|
|
Bogomolov, A.I. (2003) Osnovanija ustrojstva i raschet reaktivnyh system. Penza: Penza Artillery Engineering Institute
|
1
|
Dziopa, Z., Buda, P., Nyckowski, M., Pawlikowski, R. (2015) Dynamics of an unguided missiles launcher. Journal of theoretical and applied mechanics, 53(1), 69-80
|
|
Dziopa, Z., Krzysztofik, I., Koruba, Z. (2010) An analysis of the dynamics of a launcher-missile system on a moveable base. Bulletin of the Polish Academy of Sciences. Technical Sciences, 58(4), 645-650
|
|
Raducanu, D., Nedelcu, I., Safta, D., Somoiag, P., Moldoveanu, C. (2009) Particularity concerning evaluation of unguided rocket trajectories deviation under the disturbance factors action. u: World Congress on Engineering 2009, London, Vol II WCE, July 1-3, Proceedings, London, pp.1458-1462, http://www.iaeng.org/publication/WCE2009/WCE2009_pp1458-1462.pdf [Accessed: 30 July 2019]
|
|
Shyiko, O.M. (2014) Simulation of joint movement of a missile and a mobile launcher / Modelûvannâ sumіsnogo ruhu reaktivnogo snarâda TA mobіl'noї puskovoї ustanovki RSZV. Armament systems and military equipment, 2(38), pp.44-60
|
1
|
Somoiag, P., Moraru, F., Safta, D., Moldoveanu, C. (2007) A mathematical model for the motion of a rocket-launching device system on a heavy vehicle. WSEAS Transactions on Applied and Theoretical Mechanics, 2(4), pp.95-101, https://www.researchgate.net/publication/261708644 [Accessed: 30 July 2019]
|
|
Svetlickij, V.A. (1986) Dinamika starta letatelnyh apparatov. Moscow: Nauka. Gl. red. fiz.-mat. lit
|
|
|
|