- citati u SCIndeksu: 0
- citati u CrossRef-u:0
- citati u Google Scholaru:[
]
- posete u poslednjih 30 dana:14
- preuzimanja u poslednjih 30 dana:0
|
|
2006, vol. 34, br. 1-2, str. 73-78
|
Slobodni radikali kiseonika
Reactive oxygen species
Univerzitet u Prištini sa privremenim sedištem u Kosovskoj Mitrovici, Medicinski fakultet, Srbija
Sažetak
Reaktivni kiseonički radikali predstavljaju jednu od najjačih i najčešćih pretnji za žive organizme. Slobodni radikali kiseonika, kao superoksid anjon radikal, vodonik peroksid, hidroksil radikal, mogu se skupljati u ćeliji, zbog normalnih metaboličkih procesa ili različitih patoloških (toksičnih) procesa. Ovi reaktivni radikali mogu dovesti do poremećaja prirodnog antioksidacionog odbrambenog sistema, što rezultira oštećenjem bioloških makromolekula: nukleinskih kiselina, proteina, ugljenih hidrata i lipida. Oksidacioni stres se definiše kao poremećaj ravnoteže između prooksidanata i antioksidanata, što dovodi do potencijalnog oštećenja ćelija. Smatra se da je oksidacioni stres jedan od uzročnika brojnih bioloških i patoloških procesa poput starenja, upale, karcinogeneze, ishemije-reperfuzije, kao i niza oboljenja: dijabetesa, ateroskleroze i/ili neurodegenerativnih bolesti.
Abstract
Reactive products of oxygen are amongst the most potent and omnipresent threats faced by the living organism. Intracellular accumulation of reactive oxygen species such as superoxide anion, hydrogen peroxide, hydroxyl radical, and peroxy radical, can arise from toxic insults or normal metabolic processes. These species may perturb the cell's natural antioxidant defense systems, resulting in damage to all of the major classes of biological macromolecules, including nuclear acids, proteins, carbohydrates and lipids. Oxidative stress has been defined as a disturbance in the prooxidant-antioxidant balance, resulting in potential cell damage. It has been implicated in several biological and pathological processes like ageing, inflammation, carcinogenesis, ischemia-reperfusion and in diseases including diabetes mellitus, atherosclerosis, and/or neurodegenerative diseases.
|
|
|
Reference
|
|
Abuja, P.M., Albertini, R. (2001) Methods for monitoring oxidative stress, lipid peroxidation and oxidation resistance of lipoproteins. Clin Chim Acta, 306(1-2): 1-17
|
|
Babior, B.M., Lambeth, J.D., Nauseef, W. (2002) The neutrophil NADPH oxidase. Arch Biochem Biophys, 397(2): 342-4
|
1
|
Brigelius-Flohe, R. (1999) Tissues specific functions of individual glutathione peroxidase. Free Radic Biol Med, 27(9-10): 951
|
1
|
Cadenas, E., Davies, K.J. (2000) Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med, 29(3-4): 222-30
|
|
Chen, J., Mehta, J.L. (2004) Role of oxidative stress in coronary heart disease. Indian Heart J, 56(2): 163-73
|
|
Cooke, J.P. (2003) Flow, NO, and atherogenesis. Proceedings of the National Academy of Sciences, 100 (3): 768
|
|
Curtin, J.F., Donovan, M., Cotter, T.G. (2002) Regulation and measurement of oxidative stress in apoptosis. J Immunol Methods, 265(1-2): 49-72
|
2
|
Dalton, T.P., Shertzer, H.G., Puga, A. (1999) Regulation of gene expression by reactive oxygen. Annu Rev Pharmacol Toxicol, 39: 67-101
|
4
|
de Zwart, L.L., Meerman, J.H., Commandeur, J.N., Vermeulen, N.P. (1999) Biomarkers of free radical damage applications in experimental animals and in humans. Free Radic Biol Med, 26(1-2): 202-26
|
|
Dukan, S., Farewell, A., Ballesteros, M., Taddei, F., Radman, M., Nystrom, T. (2000) Protein oxidation in response to increased transcriptional or translational errors. Proc Natl Acad Sci USA, 97(11): 5746-9
|
25
|
Đorđević, V.B., Pavlović, D.D., Kocić, G.M. (2000) Biohemija slobodnih radikala. Niš: Medicinski fakultet
|
|
Fleury, C., Mignotte, B., Vayssiere, J. (2002) Mitochondrial reactive oxygen species in cell death signaling. Biochimie, 84(2-3): 131-41
|
3
|
Fridovich, I. (1997) Superoxide anion radical (O2-.), superoxide dismutases, and related matters. J Biol Chem, 272(30): 18515-7
|
2
|
Halliwell, B. (1999) Antioxidant defence mechanisms: From the beginning to the end (of the beginning). Free Radic Res, 31(4): 261-72
|
1
|
Hancock, J.T., Desikan, R., Neill, S.J. (2001) Role of reactive oxygen species in cell signalling pathways. Biochem Soc Trans, 29(Pt 2): 345-50
|
|
Harris, L.R., Cake, M.H., Macey, D.J. (1994) Iron release from ferritin and its sensitivity to superoxide ions differs among vertebrates. Biochem J, 301 ( Pt 2): 385-9
|
|
Hawkins, C.L., Davies, M.J. (2001) Generation and propagation of radical reactions on proteins. Biochim Biophys Acta, 1504(2-3): 196-219
|
1
|
Hensley, K., Robinson, K.A., Gabbita, S.P., Salsman, S., Floyd, R.A. (2000) Reactive oxygen species, cell signaling, and cell injury. Free Radic Biol Med, 28(10): 1456-62
|
2
|
Liochev, S.I., Fridovich, I. (1994) The role of O2.- in the production of HO.: In vitro and in vivo. Free Radic Biol Med, 16(1): 29-33
|
|
Maher, P., Schubert, D. (2000) Signaling by reactive oxygen species in the nervous system. Cell Mol Life Sci, 57(8-9): 1287-305
|
7
|
Marnett, L.J. (1999) Lipid peroxidation-DNA damage by malondialdehyde. Mutat Res, 424(1-2): 83-95
|
6
|
Mates, J.M., Perez-Gomez, C., de Nunez, C.I. (1999) Antioxidant enzymes and human diseases. Clin Biochem, 32(8): 595-603
|
6
|
Moncada, S., Higgs, A. (1993) The L-arginine-nitric oxide pathway. N Engl J Med, 329(27): 2002-12
|
|
Nauseef, W.M. (1999) The NADPH-dependent oxidase of phagocytes. Proc Assoc Am Physicians, 111(5): 373-82
|
5
|
Niki, E., Yoshida, Y., Saito, Y., Noguchi, N. (2005) Lipid peroxidation: Mechanisms, inhibition, and biological effects. Biochemical and Biophysical Research Communications, 338(1), 668-676
|
|
Nordberg, J., Arner, E.S. (2001) Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med, 31(11): 1287-312
|
|
Price, D.T., Vita, J.A., Keaney, J.F. (2000) Redox control of vascular nitric oxide bioavailability. Antioxid Redox Signal, 2(4): 919-35
|
|
Pryor, W.A., Squadrito, G.L. (1995) The chemistry of peroxynitrite in vivo from nitric oxide and superoxide. Chem Biol Interact, 96: 203-206
|
|
Rossi, F., Bellavite, P., Berton, G., Grzeskowiak, M., Papini, E. (1985) Mechanism of production of toxic oxygen radicals by granulocytes and macrophages and their function in the inflammatory process. Pathol Res Pract, 180(2): 136-42
|
2
|
Steinberg, D. (1997) Low density lipoprotein oxidation and its pathobiological significance. J Biol Chem, 272(34): 20963-6
|
|
Stuehr, D., Pou, S., Rosen, G.M. (2001) Oxygen reduction by nitric-oxide synthases. Journal of Biological Chemistry, 276(18): 14533-14536
|
|
Winterbourn, C.C., Vissers, M.C., Kettle, A.J. (2000) Myeloperoxidase. Current opinion in hematology, 7(1): 53-8
|
6
|
Witko-Sarsat, V., Friedlander, M., Capeillere-Blandin, C., Nguyen-Khoa, T., Nguyen, A.T., Zingraff, J., Jungers, P., Descamps-Latscha, B. (1996) Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int, 49(5): 1304-13
|
|
|
|