Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:0
  • preuzimanja u poslednjih 30 dana:0
članak: 1 od 1  
Facta universitatis - series: Mathematics and Informatics
2013, vol. 28, br. 1, str. 75-86
jezik rada: engleski
vrsta rada: neklasifikovan

Simplifications of rational matrices by using UML
(naslov ne postoji na srpskom)
Faculty of Sciences and Mathematics, Department of Computer Sciences, Niš

e-adresa: milan12t@ptt.rs, ivan.stanimirovic@gmail.com

Projekat

Razvoj metoda izračunavanja i procesiranja informacija: teorija i primene (MPNTR - 174013)

Sažetak

(ne postoji na srpskom)
The simplification process on rational matrices consists of simplifying each entry represented by a rational function. We follow the classic approach of dividing the numerator and denominator polynomials by their common GCD polynomial, and provide the activity diagram in UML for this process. A rational matrix representation as the quotient of a polynomial matrix and a polynomial is also discussed here and illustrated via activity diagrams. Also, a class diagram giving the links between the class of rational matrices and the classes of rational functions and polynomials is obtained.

Ključne reči

UML; rational matrix; simplification; activity diagrams; class diagrams; Visual C++

Reference

*** (2003) Object Management Group,. http://www.omg.org: OMG Uniffied Modeling Language speciffication, March 2003, version 1.5
Booch, G., Rumbaugh, J., Jacobson, I. (1999) The unified modeling language user guide. Addison Wesley
Golub, H.G., van Loan, C.F. (1996) Matrix computations. Baltimore, MD, itd: Johns Hopkins University Press
Malyshev, A.N. (1995) MatriX equations: Factorization of matrix polynomials. u: Hazewinkel M. [ur.] Handbook of Algebra I, Elsevier, 79-116
Rodman, L. (1995) Matrix functions. u: Hazewinkel M. [ur.] Handbook of algebra, Elsevier, I, 117-154
Stanimirović, I.P., Task, M.B., Ilić, A.M. (submitted) Full-rank LDL decomposition and generalized inverses of polynomial hermitian matrices. Information and Computation
Stanimirović, P.S., Pappas, D., Katsikis, V.N., Stanimirović, I.P. (2012) Symbolic computation of -inverses using QDR factorization. Linear Algebra and its Applications, 437(6): 1317-1331
Tasić, M.B., Stanimirović, I.P. (2010) Implementation of the partitioning method. Facta universitatis - series: Mathematics and Informatics, br. 25, str. 25-33
Tasić, M.B., Stanimirović, I.P. (2013) Symbolic computation of the Moore-Penrose inverse using the LDL*decomposition of the polynomial matrix. Filomat, vol. 27, br. 8, str. 1393-1403
Tasić, M.B., Stanimirović, P.S., Petković, M.D. (2007) Symbolic computation of weighted Moore-Penrose inverse using partitioning method. Applied Mathematics and Computation, 189(1): 615-640
Winkler, F. (1996) Polynomial Algorithms in Computer Algebra. u: Texts and Monographs in Symbolic Computation, Springer
Wolfram, S. (1999) The Mathematica book. Champaign, IL: Wolfram Media