Metrika članka

  • citati u SCindeksu: [1]
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:2
  • preuzimanja u poslednjih 30 dana:1
članak: 1 od 1  
Glasnik Šumarskog fakulteta
2012, br. 105, str. 81-98
jezik rada: srpski
vrsta rada: izvorni naučni članak
objavljeno: 22/03/2013
doi: 10.2298/GSF111230002K
Sadržaj organskog ugljenika u nekim šumskim zemljištima u Srbiji
Univerzitet u Beogradu, Šumarski fakultet

e-adresa: snezana.belanovic@sfb.bg.ac.rs

Projekat

Istraživanje klimatskih promena i njihovog uticaja na životnu sredinu - praćenje uticaja, adaptacija i ublažavanje (MPNTR - 43007)

Sažetak

U ovom radu se navode rezultati procene sadržaja organskog ugljenika (C) u površinskim slojevima (0-20 cm) u najzastupljenijim zemljištima šumskih ekosistema u centralnoj Srbiji: eutričnom rankeru, eutričnom kambisolu i distričnom kambisolu. Istraživanja su bazirana na uzorkovanjima zemljišta tokom 2003., 2004. i 2010. godine. Laboratorijske analize su obuhvatile odgovarajuća fizička i hemijska svojstva zemljišta, neophodna za kvantifikovanje zemljišnog organskog ugljenika u organskim i mineralnim slojevima zemljišta. Srednje vrednosti količine organskog ugljenika (SOC) u organskim horizontima proučavanih zemljišta, variraju između: 1,01±0,4 kg·m-2 (distrični kambisol), 0,90±0,41 kg·m-2 (eutrični ranker) i 0,94±0,36 kg·m-2 (eutrični kambisol). Prosečne vrednosti količine organskog ugljenika u mineralnim slojevima (0-20 cm) se kreću između: 3,83±1,70 kg·m-2 (distrični kambisol), 6,26±3,41 kg·m-2 (eutrični ranker) i 4,36±1,91 kg·m-2 (eutrični kambisol). Prosečna vrednost količine organskog ugljenika, ukupno za proučavana zemljišta (organske i mineralne slojeve) iznosi 5,77 kg·m-2. U radu se razmatraju metodološki aspekti regionalne procene sadržaja zemljišnog organskog ugljenika kao potencijala za korišćenje u programu nacionalne inventure šuma.

Ključne reči

humusno-silikatna zemljišta; smeđa zemljišta; mineralni sloj; organski ugljenik

Reference

*** (2003) Good practice guidance for land use. u: Land-Use Change and Forestry, IPCC, GPG for LULUCF
*** (2006) IPC forest manual: Part III: Soil sampling and analysis. Hamburg
*** (2012) Republički hidrometeorološki zavod Srbije. Beograd, http://www.hidmet.gov.rs/ (posećeno: maj 2012. god.)
*** (2012) Staništa Srbije. maj 2012. http://habitat.bio.bg.ac.rs/stanista_srbije.htm
*** (2011) EUNIS biodiversity database. okt. 2011. http://eunis.eea.europa.eu/index.jsp
Avnimelech, Y., Cohen, A. (1988) On the use of organic manures for amendment of compacted clay soils: Effects of aerobic and anaerobic conditions. Biological Wastes, 26(4): 331-339
Banković, S., Medarević, M., Pantić, D., Petrović, N. (2009) Nacionalna inventura šuma Republike Srbije - šumski fond Republike Srbije. Beograd: Ministarstvo poljoprivrede šumarstva i vodoprivrede Republike Srbje - Uprava za šume
Baritz, R., van Ranst, E., Seufert, G. (2005) Soil carbon default values relevant for evaluations of the carbon status of forest soils in Europe. WP3-D32-RUG (Final Report for Deliverable 3. 2, CarboInvent, www.joanneum.at/CarboInvent/soils.php)
Bošnjak, Đ. (1997) Određivanje zapreminske i specifične mase zemljišta. u: Bošnjak Đ. [ur.] Metode istraživanja i određivanja fizičkih svojstava zemljišta, Novi Sad: Jugoslovensko društvo za ispitivanje zemljišta, 51-58
Burke, I.C., Yonker, C.M., Parton, W.J., Cole, C.V., Schimel, D.S., Flach, K. (1989) Texture, Climate, and Cultivation Effects on Soil Organic Matter Content in U.S. Grassland Soils. Soil Science Society of America Journal, 53(3): 800
Callesen, I., Liski, J., Raulund-Rasmussen, K. (2003) Soil carbon stores in Nordic welldrained forest soils: Relationships with climate and texture class. Global Change Biology, Oxford, 3, vol. 9, 358-370
Cienciala, E., Exnerová, Z., Macků, J. (2006) Forest topsoil organic carbon content in Southwest Bohemia region. Journal of Forest Science, Praha, 52 (9): 387-398
Gardina, C.P., Ryan, M.G. (2000) Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature, London, (404): 858-861
IPCC (2003) Intergovernmental panel on climate change good practice guidance for land use, land-use change and forestry. Institute for Global Environmental Strategies (IGES) for the IPCC
Jobbagy, E.G., Jackson, R.B. (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10(2): 423
Lal, R. (2005) Forest soils and carbon sequestration. Forest Ecology and Management, Amsterdam, Vol 220, br. 1-3, 242-258
Lettens, S., van Orshoven, J., van Wesemael, B., Muys, B., Perrin, D. (2005) Soil organic carbon changes in landscape units of Belgium between 1960 and 2000 with reference to 1990. Global Change Biology, Oxford, 12, vol. 11, Blackwell publishing, doi: 10.1111/j.1365-2486.2005.01074.x
Liski, J., Ilvesniemi, H., Makela, A., Westman, C.J. (1999) CO2 emissions from soil in response to climatic warming are overestimated - the decomposition of old soil organic matter is tolerant of temperature. Ambio, 2, vol. 28, 171-174
Piccolo, A. (2001) The supramolecular structure of humic substances. Soil science, Philadelphia, 11, vol. 166, (810-832)
Ponomareva, V.V., Plotnikova, T.A. (1975) Opredelenie sodržanija i sostava organičeskogo veščestva: Metodičeskie ukazanija po opredeleniju sodržanija i sostava gumusa v počvah (mineral'nih i torfjanih). Leningrad: Vsejuzna Akademija Selkohozjajstvenih nauk V.I. Lenina, Centralnij Muzej Počvovedenija im. V. B. Dokučaeva
Post, W.M., Kwon, K.C. (2000) Soil carbon sequestration and land-use change: processes and potential. Global Change Biology, Oxford, 3, vol. 6, Blackwell publishing, 317-327
Robert, M. (2001) Soil carbon sequestration for improved land management based on the work of Michel Robert. Rome: FAO
Schimel, D.S., Braswell, B.H., Holland, E.A., Mckeown, R., Ojima, D.S., Painter, T.H., Parton, W.J., Townsend, A.R. (1994) Climatic, edaphic, and Biotic controls over storage and turnover of carbon in soils. Global Biogeochemical Cycles, Washington, 3, vol. 8, 279-293
Semenov, V.M., Ivannikova, L.A., Kuznecova, T.V., Semenova, N.A. (2004) Rol rastitelnoj biomassy b formirovanii aktivnogo pula organičeskogo veščestva počvy. Počvovedenie, Moskva, 11, 1350-1360
Sheikh, M.A., Kumar, M., Bussmann, R.W. (2009) Altitudinal variation in soil organic carbon stock in coniferous subtropical and broadleaf temperate forests in Garhwal Himalaya. Carbon Balance and Management, 4(1): 6
Stolbovoy, V., Montanarella, L., Filippi, N., Selvaradjou, S., Panagos, P., Gallego, J. (2005) Soil sampling protocol to certify the changes of organic carbon stock in mineral soils of European Union. Luxembourg: Office for Official Publications of the European Communities, EUR 21576 en
Thurig, E. (2005) Carbon budget of Swiss forests: Evaluation and application of empirical models for assessing future management impacts. Zurich: Swiss Federal Institute of Technology, Dissertation ETHY No
Torn, M.S., Trumbore, S.E., Chadwick, O.A., Vitousek, P.M., Hendricks, D.M. (1997) Mineral control of soil organic carbon storage and turnover. Nature, London, 6647, vol. 389, Nature Publishing Group, 170-173
Wojick, D.E. (1999) Carbon storage in soil, the ultimate no-regrets policy?: A report to greening earth society. http://www.inia.org.uy/disciplinas/agroclima/ambiente/carbonstorageinsoil.htm/ (posećeno: septembar 2011. god)