Akcije

Journal of Mining and Metallurgy B: Metallurgy
kako citirati ovaj članak
podeli ovaj članak

Metrika

  • citati u SCIndeksu: [1]
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:6
  • preuzimanja u poslednjih 30 dana:1

Sadržaj

članak: 1 od 1  
2014, vol. 50, br. 2, str. 139-144
Estimation of viscosity for some silicate ternary slags
(naslov ne postoji na srpskom)
State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, China + School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, China

e-adresashuqifeng@gmail.com
Projekat:
NSFC (No. 50704002and 51174018)

Ključne reči: slag; viscosity; estimation; KTH model; general solution model; silicates
Sažetak
(ne postoji na srpskom)
A new method, combining KTH model with geometrical model (General solution model by Chou) to estimate viscosity of some ternary silicate slags, was proposed in this work. According to modified KTH model, viscous Gibbs free energy for mixing of ternary slags was estimated by employing general solution model. It was found that viscous Gibbs energy for mixing of ternary system could be calculated using solely viscous Gibbs energy for mixing of sub-binary systems. The viscosities of five ternary slags CaO-MnO-SiO2, CaO-FeO-SiO2, FeO-MnO-SiO2, CaO-MgO-SiO2 and FeO-MgO-SiO2 were estimated in the present work. A good agreement with available experimental data, with mean deviation less than 20%, was achieved. The modified KTH model has advantages with less model parameters and improved estimation ability by comparison to original KTH model.
Reference
Bockris, J. OM., Lowe, D.C. (1954) Viscosity and the Structure of Molten Silicates. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 226(1167): 423-435
Chou, K. (1995) A general solution model for predicting ternary thermodynamic properties. Calphad, 19(3): 315-325
Chou, K., Li, W., Li, F., He, M. (1996) Formalism of new ternary model expressed in terms of binary regular-solution type parameters. Calphad, 20(4): 395-406
Eyring, H. (1936) Viscosity, Plasticity, and Diffusion as Examples of Absolute Reaction Rates. J. Chem. Phys, 4(4): 283
Gomidželović, L., Živković, D., Kostov, A., Mitovski, A., Balanović, L. (2010) Comparative thermodynamic study of Ga–In–Sb system. Journal of Thermal Analysis and Calorimetry, 103(3): 1105-1109
Hillert, M. (1980) Empirical methods of predicting and representing thermodynamic properties of ternary solution phases. Calphad, 4(1): 1-12
Iida, T., Sakai, H., Kita, Y., Murakami, K. (2000) High Temp. Mater. Processes, 19: 153
Iida, T., Sakai, H., Kita, Y., Shigeno, K. (2000) An Equation for Accurate Prediction of the Viscosities of Blast Furnace Type Slags from Chemical Composition. ISIJ International, 40(Suppl): S110-S114
Ji, F.Z., Sichen, D., Seetharaman, S. (1997) Experimental studies of the viscosities in the CaO-Fe n O-SiO2 slags. Metall. Mater. Trans. B, 28(5): 827-834
Ji, F.Z. (2001) Experimental studies of the viscosities in CaO-MnO-SiO2 and CaO-Fe n O-MnO-SiO2 slags. Metall. Mater. Trans. B, 32(1): 181-186
Ji, F.Z., Sichen, D., Seetharaman, S. (1999) International Journal of Thermophysics, 20(1): 309-323
Ji, F-Z., Seetharaman, S. (1998) Ironmaking and steelmaking, 25(4): 309
Kartini, E., Sakuma, T., Basar, K., Ihsan, M. (2008) Mixed cation effect on silver–lithium solid electrolyte (AgI)0.5(LiPO3)0.5. Solid State Ionics, 179(19-20): 706-711
Kawahara, M., Mizoguchi, K., Suginohara, Y. (1981) Bull. Kyushu Inst. Technology, 43: 53-5
Kohler, F. (1960) Zur Berechnung der thermodynamischen Daten eines ternren Systems aus den zugehrigen binren Systemen. Monatsh. Chem, 91(4): 738-740
Kozakevitch, P.P. (1960) Rev. metall, 57, 149-160
Kozakevotch, P.P. (1949) Rev. metallurgie, 46 (8); 505
Licko, T., Danek, V. (1986) Phys. Chem.Glasses, 27: 22
Lumsden, J. (1961) Physical chemistry of process metallurgy, part 1. New York: Interscience, : 165
Machin, J.S., Yee, T.B. (1954) Viscosity Studies of System CaO-MgO-Al2O3-SiO3: IV, 60 and 65% SiO2. J.Amer. Ceram. Soc, 37(4): 177-186
Mills, K.C., Sridhar, S. (1999) Viscosities of ironmaking and steelmaking slags. Ironmaking & Steelmaking, 26(4): 262-268
Mills, K.C., Chapman, L., Fox, A.B., Sridhar, S. (2001) 'Round robin' project on the estimation of slag viscosities. Scand. J. Metall, 30(6): 396-403
Muggianu, Y.M., Gambino, M., Bross, J.P. (1975) J. Chimie Physique, 72, 83
Nakamoto, M., Lee, J., Tanaka, T. (2005) A Model for Estimation of Viscosity of Molten Silicate Slag. ISIJ Int, 45(5): 651-656
Plevachuk, Yu., Sklyarchuk, V., Gerbeth, G., Eckert, S., Novakovic, R. (2011) Surface tension and density of liquid Bi–Pb, Bi–Sn and Bi–Pb–Sn eutectic alloys. Surface Science, 605(11-12): 1034-1042
Riboud, P.V., Roux, Y., Lucas, D., Gayes, H. (1981) Fachber Huttenprax Metall weiterverarb, 19: 859
Richardson, F.D. (1956) Activities in ternary silicate melts. Transactions of the Faraday Society, 52: 1312
Seetharaman, S., Sichen, D., Ji, F.Z. (2000) Estimation of viscosities of ternary silicate melts using the excess gibbs energy of mixing. Metall. and Mater. Trans. B, 31(1): 105-109
Segers, L., Fontana, A., Winand, R. (1979) Viscosite de melanges de silicates fondus du systeme CaOSiO2MnO. Electrochimica Acta, 24(2): 213-218
Sen, S., George, A.M., Stebbins, J.F. (1996) Ionic conduction and mixed cation effect in silicate glasses and liquids: 23Na and 7Li NMR spin-lattice relaxation and a multiple-barrier model of percolation. Journal of Non-Crystalline Solids, 197(1): 53-64
Shu, Q.F. (2009) Steel Res. Inter, 80: 107
Shu, Q., Zhang, J. (2006) A Semi-empirical Model for Viscosity Estimation of Molten Slags in CaO–FeO–MgO–MnO–SiO2 Systems. ISIJ International, 46(11): 1548-1553
Sichen, D., Bygd`en, J., Seetharaman, S. (1994) A Model for Estimation of Viscosities of Complex Metallic and Ionic Melts. Metall. Mater. Trans. B, 25(4): 519-525
Temkin, M. (1945) Acta Phys. Chim. URSS, 20: 411
Toop, G.W. (1965) Trans. Met. Soc. AIME, 233, 850
Urbain, G., Bottinga, Y., Richet, P. (1982) Viscosity of liquid silica, silicates and alumino-silicates. Geochim.Cosmochim . Acta, 46(6): 1061-1072
Zhang, G.H., Chou, K.C. (2012) Viscosity model for fully liquid silicate melt. Journal of Mining and Metallurgy B: Metallurgy, vol. 48, br. 1, str. 1-10
Zhang, L., Jahanshahi, S. (1998) Review and modeling of viscosity of silicate melts: Part I. Viscosity of binary and ternary silicates containing CaO, MgO, and MnO. Metall. Mater. Trans. B, 29(1): 177-186
Zhang, L., Jahanshahi, S. (1998) Review and modeling of viscosity of silicate melts: Part II. viscosity of melts containing iron oxide in the CaO-MgO-MnO-FeO-Fe2O3-SiO2 system. Metall. Mater. Trans. B, 29(1): 187-195
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
DOI: 10.2298/JMMB130218014S
objavljen u SCIndeksu: 12.12.2014.

Povezani članci

J Min & Metal B Metallurgy (2014)
Influences of different components on viscosities of CaO-MgO-Al2O3-SiO2 melts
Zhang G.H., i dr.

J Min & Metal B Metallurgy (2012)
Viscosity model for aluminosilicate melt
Zhang G.H., i dr.

J Min & Metal B Metallurgy (2012)
Viscosity model for fully liquid silicate melt
Zhang G.H., i dr.

prikaži sve [16]