Akcije

Mathematica Moravica
kako citirati ovaj članak
podeli ovaj članak

Metrika

  • citati u SCIndeksu: [1]
  • citati u CrossRef-u:[1]
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:4
  • preuzimanja u poslednjih 30 dana:4

Sadržaj

članak: 1 od 1  
2012, vol. 16, br. 1, str. 1-32
The axiom of infinite choice
(naslov ne postoji na srpskom)
Univerzitet u Beogradu, Matematički fakultet

e-adresaandreja@predrag.us
Ključne reči: The Axiom of Infinite Choice; The Axiom of Choice; Zermelo's Axiom of Choice; Lemma of Infinite Maximality; Zorn's lemma; Restatements of the Axiom of Infinite Choice; Choice functions; Foundation of the Fixed Point Theory; Geometry of the Axiom of Infinite
Sažetak
(ne postoji na srpskom)
In this paper we present the Axiom of Infinite Choice: Given any set P , there exist at least countable choice functions or there exist at least finite choice functions. This paper continues the study of the Axiom of Choice by E. Z e r m e l o [Neuer Beweis für die Möglichkeit einer Wohlordung, Math. Annalen, 65 (1908), 107-128; translated in van Heijenoort 1967, 183-198], and by M. T a s k o v i ć [The axiom of choice, fixed point theorems, and inductive ordered sets, Proc. Amer. Math. Soc., 116 (1992), 897-904]. Fredholm and Leray-Schauder alternatives are two direct consequences of the Axiom of Infinite Choice.
Reference
Abian, A. (1983) A fixed point theorem equivalent to the axiom of choice. Abstracts Amer. Math. Soc, abstract no. 388, 4
Amann, H. (1977) Ordered structures and fixed points. Bochum: Ruhr Universität
Birkhoff, G. (1948) Lattice theory. Amer. Math. Soc. Colloq. Publ., New York, vol. 25
Bourbaki, N. (1949) Sur le théorème de Zorn. Archiv der Mathematik, 2(6): 434-437
Caristi, J. (1976) Fixed point theorems for mappings satisfying inwardness conditions. Transactions of the American Mathematical Society, 215: 241-241
Gödel, K. (1940) Consistency of the Continuum Hypothesis. (AM-3). Princeton: Walter de Gruyter GmbH
Howard, P., Rubin, J., Howard, P., Rubin, J. (1998) Consequences of the Axiom of Choice. Providence, Rhode Island: American Mathematical Society (AMS)
Jech, T.J. (1973) The Axiom of Choice. Amsterdam: North-Holland
Klimeš, J. (1981) Fixed edge theorems for complete lattices. Arch. Math., 227-234; 17
Kuratowski, C. (1922) Une méthode d'élimination des nombres transfinis des raisonnements mathématiques. Fundamenta Mathematicae, 3: 76-108
Kurepa, U. (1952) Sur la relation d'inclusion et l'axiome de choix de Zermelo. Bulletin de la Socit mathematique de France, 79: 225-232
Leader, S., Hoyle, S. (1975) Contractive fixed points. Fundamenta Mathematicae, 87(2): 93-108
Moore, G.H. (1982) Zermelo’s axiom of choice, its origins, development and influence. New York-Heidelberg-Berlin: Springer-Verlag, Vol. 8, 410 pages
Mostowski, A. (1948) On the principle of dependent choices. Fundamenta Mathematicae, 35: 127-130
Rubin, H., Rubin, J. (1970) Equivalents of the axiom of choice. Amsterdam - London: North-Holland, p. 134
Rubin, H. (1958) On a problem of Kurepa concerning the axiom of choice. Notices Amer. Math. Soc, 5, no. 378
Rubin, H., Rubin, J. (1985) Equivalents of the Axiom of Choice II. Amsterdam - New York - Oxford: North-Holland, p. 322
Rubin, H., Rubin, J. (1960) Some new forms of the axiom of choice. Notices Amer. Math. Soc, 7, no. 380
Tarski, A. (1955) A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of Mathematics, 5(2): 285-309
Taskovi{ć, M.R. (1992) The axiom of choice, fixed point theorems, and inductive ordered sets. Proceedings of the American Mathematical Society, 116(4): 897-897
Tasković, M.R. (1993) Nonlinear functional analysis (fundamental elements of theory). Beograd: Zavod za udžbenike i nastavna sredstva, First Book: Monographs, 812 pages, (Serbo-Croation). English summary: Comments only new main results of this book, Vol. 1 (1993), 713-752
Tasković, M.R. (2001) Nonlinear functional analysis. u: Global Convex Analysis - General convexity, Variational methods and Optimization, Beograd: Zavod za udžbenike i nastavna sredstva and Vojnoizdavački zavod, Second Book: Monographs, (in Serbian), 1223 pages. English summary: Transversal and fixed points, forks, general convex functions, and applications, Vol. 2 (2001), 1067-1176
Tasković, M.R. (2005) Theory of transversal point, spaces, and forks. u: Monographs of a new mathematical theory, Beograd: VIZ, 1001-1022; in Serbian, English summary
Tasković, M.R. (1992) New maximal principles. Math. Japonica, 549-554; 37
Tasković, M.R. (1979) Banach's mappings of fixed point on spaces and ordered sets. Math. Balkanica, These, Univesity of Beograd, 1978, 151 pages; 9, 130 pages
Tasković, M.R. (1988) Characterizations of inductive posets with applications. Proc. Amer. Math. Soc., 104, 2, 650-659
Tasković, M.R. (2004) Transversal sets. Mathematica Moravica, br. 8-2, str. 53-93
Tasković, M.R. (1986) On an equivalent of the axiom of choice and its applications. Mathematica Japonica, 31, 6, 979-991
Zermelo, E. (1907) Neuer Beweis für die Möglichkeit einer Wohlordnun. Mathematische Annalen, 65(1): 107-128
Zorn, M. (1935) A remark on method in transfinite algebra. Bulletin of the American Mathematical Society, 41(10): 667-671
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
DOI: 10.5937/MatMor1201001T
objavljen u SCIndeksu: 25.03.2017.

Povezani članci

Mathematica Moravica (2009)
New equivalents of the axiom of choice and consequences
Tasković Milan R.

Mathematica Moravica (2016)
Solution, extensions and applications of the Schauder's 54th problem in Scottish book
Tasković Milan R.

YUJOR, Yug J Oper Res (1993)
Minimax theory with transversal points
Tasković Milan R.

prikaži sve [12]