Metrika članka

  • citati u SCindeksu: [2]
  • citati u Google Scholaru:[=>]
  • posete u prethodnih 30 dana:1
  • preuzimanja u prethodnih 30 dana:0
članak: 1 od 1  
FME Transactions
2012, vol. 40, br. 2, str. 63-68
jezik rada: engleski
neklasifikovan

Dinamička analiza modifikovane helikopterske lopatice od kompozitnih materijala
aPratt and Whitney Canada, Quebec, Canada
bUniverzitet u Beogradu, Mašinski fakultet

e-adresa: brasuo@mas.bg.ac.rs

Sažetak

U ovom radu izvršena je modalna analiza modifikovane lopatice helikoptera 'Gazela'. Modifikovana lopatica je kompletno kompozitna sa saćastom ispunom. Prikazan je metod određivanja modova oscilovanja i sopstvenih frekvencija. Modifikovana lopatica sastoji se od saćaste ispune, ramenjače od 3D usmerenog kompozita i tankih karbonskih ploča kao oplate. Da bi se odredila matrica krutosti ispune korišćen je metod ekvivalentnih masa. U cilju nalaženja optimalnog metoda za određivanje sopstvenih frekvencija ispitano je nekoliko poznatih metoda. Metod Lancosa pokazao je najtačnije rezultate kroz umereno procesorsko vreme kada je u pitanju određivanje sopstvenih frekvencija i modova oscilovanja kod struktura od kompozitnih materijala sa saćastim ispunama. Ovom metodom izračunata su prva četiri moda oscilovanja modifikovane kompozitne lopatice, i prikazani su rezultati modova oscilovanja i deformacione energije lopatice.

Ključne reči

normal mode; natural frequencies; helicopter composite blade; hexagonal honeycomb core; carbon fiber

Reference

Abbadi, A., Koutsawa, Y., Carmasol, A., Belouettar, S., Azari, Z. (2009) Experimental and numerical characterization of honeycomb sandwich composite panels. Simulation Modelling Practice and Theory, 17(10): 1533-1547
Aydincak, I., Kayranaltan, A. (2009) An approach for the evaluation of effective elastic properties of honeycomb cores by finite element analysis of sandwich panels. Journal of Sandwich Structures and Materials, 11(5): 385-408
Beards, C.F. (1996) Structural vibration analysis modelling, analysis and damping of vibrating structures. Oxford: Butterworth Heinemann
García, J.A., Chiminelli, A., García, B., Lizaranzu, M., Jiménez, M.A. (2011) Characterization and material model definition of toughened adhesives for finite element analysis. International Journal of Adhesion and Adhesives, 31(4): 182-192
Johnston, B., Johnston, P. (2004) A modified non-linear transformation method for evaluating weakly singular boundary integrals. Appl. Math. Comput., 148(2): 519
Kashiwagi, M. (2009) A numerical method for eigensolution of locally modified systems based on the inverse power method. Finite Elements in Analysis and Design, 45(2): 113-120
Li, D., Xu, J., Qing, G. (2011) Free vibration analysis and eigenvalues sensitivity analysis for the composite laminates with interfacial imperfection. Composites Part B: Engineering, 42(6): 1588-1595
Masters, I.G., Evans, K.E. (1996) Models for the elastic deformation of honeycombs. Composite Structures, 35(4): 403-422
Meraghni, F., Desrumaux, F., Benzeggagh, M.L. (1999) Mechanical behaviour of cellular core for structural sandwich panels. Composites Part A: Applied Science and Manufacturing, 30(6): 767-779
Odi, R.A., Friend, C.M. (2002) A Comparative Study of Finite Element Models for the Bonded Repair of Composite Structures. Journal of Reinforced Plastics and Composites, 21(4): 311-332
Rasuo, B. (1995) Aircraft production technology. Belgrade: Faculty of mechanical engineering
Sadowski, T. (2011) Effective properties for sandwich plates with aluminium foil honeycomb core and polymer foam filling: Static and dynamic response. Computational Materials Science, 50(4): 1269-1275
Thomson, W.T., Dahleh, M.D. (1998) Theory of Vibration. New Jersey: Prentice Hall
Yeo, H., Johnson, W. (2005) Assessment of Comprehensive Analysis Calculation of Air loads on Helicopter Rotors. Journal Of Aircraft, 42 (5):