Metrika članka

  • citati u SCindeksu: [1]
  • citati u CrossRef-u:[8]
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:7
  • preuzimanja u poslednjih 30 dana:7
članak: 1 od 1  
FME Transactions
2016, vol. 44, br. 2, str. 187-196
jezik rada: engleski
vrsta rada: neklasifikovan
doi:10.5937/fmet1602187N


Višeciljna optimizacija upravljanja LQR sistema vešanja automobila korišćenjem genetskog algoritma
aSCSM College of Engineering, Ahmednagar (MS), India + AV College of Engineering, Sangamner, India
bAV College of Engineering,Sangamner, Ahmednagar (MS), India

e-adresa: maheshnagarkar@rediffmail.com

Sažetak

U radu je prikazana tehnika višeciljne optimizacije zasnovane na genetskom algoritmu, koja se koristi za iznalaženje optimalnih parametara težinske matrice kod linearnog kvadratnog regulatora. U istraživanjima je primenjeno Makfersonovo vešanje. Genetski algoritam se koristi za minimiziranje vrednosti doze vibracija, kvadratnog korena prosečnog ubrzanja ovešane mase, pomeraja ovešane mase i radnog prostora ovešane mase. Ograničenja su uzeta za kvadratni koren prosečnog ubrzanja ovešane mase, maksimalno ubrzanje ovešane mase, krutost pneumatika, pomeraj neovešane mase i kvadratni koren proseka sile upravljanja. Izvršena je simulacija pasivnog sistema vešanja i upravljanja aktivnim sistemom vešanja pomoću linearnog kvadratnog regulatora u vremenskom domenu. Izvršeno je poređenje rezultata dobijenih za drum klase E i brzine vozila od 80 km/čas. Kod stepenaste reakcije sistem upravljanja pomoću linearnog kvadratnog regulatora zasnovanog na genetskom algoritmu ima minimum oscilacija za komfornu vožnju. Vrednosti doze vibracija su redukovane za 16,54%, 40,79% i 67,34% za slučajeve 1 odnosno 2 odnosno 3. Ista tendencija postoji i kod kvadratnog korena prosečnog ubrzanja ovešane mase. Pareto front obezbeđuje veću fleksibilnost u izboru optimalnog rešenja za potrebe projektovanja.

Ključne reči

Genetic Algorithm; Multi-objective optimization; Macpherson strut; Quarter car; LQR

Reference

*** (1997) ISO: 2631-1: Mechanical vibration and shock - evaluation of human exposure to whole-body vibration
*** (1982) ISO: Reporting vehicle road surface irregularities: Technical report. ISO, IS O/TC108/S C2/W G4 N57
Amirahmadi, A., Dastfan, A., Yassami, H., Rafiei, S. (2010) Multi-Objective optimum design of controller for PFC rectifier using NSGA-II algorithm. u: 1st Power Electronic & Drive Systems & Technologies Conference (PEDSTC), pp.180-185
Anderson, B.D.O., Moore, J.B. (1990) Optimal control: Linear quadratic methods. New Jersey: Prentice Hall
Assadian, F. (2002) A comparative study of optimal linear controllers for vibration suppression. Journal of the Franklin Institute, 339(3): 347-360
Bandyopadhyay, S., Bhattacharya, R. (2012) NSGA-II based multi-objective evolutionary algorithm for a multi-objective supply chain problem. u: International Conference on Advances in Engineering, Science and Management (ICAESM), Proceedings, pp. 126-130
Baumal, A.E., McPhee, J.J., Calamai, P.H. (1998) Application of genetic algorithms to the design optimization of an active vehicle suspension system. Computer Methods in Applied Mechanics and Engineering, 163(1-4): 87-94
Darus, R., Enzai, N.I. (2010) Modeling and control active suspension system for a quarter car model. u: International Conference on Science and Social Research (CSSR 2010), pp. 1203-1206
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T. (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2): 182
Elmadany, M.M., Al-Majed, M.I. (2001) Quadratic Synthesis of Active Controls for a Quarter-Car Model. Journal of Vibration and Control, 7(8): 1237-1252
Esat, I.I., Saud, M., Engin, S.N. (2011) A novel method to obtain a real-time control force strategy using genetic algorithms for dynamic systems subjected to external arbitrary excitations. Journal of Sound and Vibration, 330(1): 27-48
Fuller, C.R., Elloit, S.J., Nelson, P.A. (1996) Active control of vibrations. London: Academic Press
Goldberg, D.E. (1989) Genetic algorithms in search: Optimization and machine learning. Reading, MA, itd: Addison-Wesley
Guida, D., Pappalardo, C.M. (2013) A new control algorithm for active suspension systems featuring hysteresis. FME Transactions, vol. 41, br. 4, str. 285-290
Hasbullah, F., Faris, W.F. (2010) A comparative analysis of LQR and Fuzzy logic Controller for active suspension using half car model. u: 11th International Conference on Control Automation Robotics & Vision, pp.2416-2420
Holland, J.H. (1992) Genetic Algorithms. Scientific American, 267(1): 66-72
Holland, J.H. (1975) Adaptation in natural and artificial Systems: an Introductory Analysis with Applications to Biology, Control, and ArtificialIntelligence. Ann Arbor: The University of Michigan Press
Hong, K., Jeon, D., Yoo, W., Sunwoo, H., Shin, S., Kim, C., Park, B. (1999) A New Model and an Optimal Pole-Placement Control of the Macpherson Suspension System. u: SAE Technical Paper Series, Technical Paper 1999-01-1331, 1-10
Hrovat, D. (1991) Optimal suspension performance for 2-D vehicle models. Journal of Sound and Vibration, 146(1): 93-110
Hrovat, D. (1997) Survey of advanced suspension developments and related optimal control applications. Automatica, vol. 33, br. 10, str. 1781-1817
Ismail, M.F., Peng, K., Hamzah, N., Sam, Y.M., Aripin, M.K., Hasan, M.H.C. (2012) A linear model of quarter car active suspension system using composite nonlinear feedback control. u: IEEE Student Conference on Research and Development (SCOReD), pp. 98-103
Jahromi, A.F., Zabihollah, A. (2010) Linear Quadratic Regulator and Fuzzy controller application in full-car model of suspension system with Magnetorheological shock absorber. u: Proceedings of 2010 IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, pp. 522 - 528
Martins, M., Santos, C., Costa, L., Frizera, A. (2014) Gait feature selection in walker-assisted gait using NSGA-II and SVM hybrid algorithm. u: 22nd European Signal Processing Conference (EUSIPCO), Proceedings, pp. 1173-1177
Meng, J., Chen, Q., He, R. (2014) Research on Optimal Control for the Vehicle Suspension Based on the Simulated Annealing Algorithm. Journal of Applied Mathematics, 2014: 1-5
Nagarkar, M.P., Patil, G. J. V. (2012) Performance analysis of quarter car active suspension system: LQR and H'control strategies. u: Third International Conference on Computing, Communication and Networking Technologies (ICCCNT'12), pp. 1-6
Nekoui, M.A., Hadavi, P. (2010) Optimal control of an active suspension system. u: Proceedings of 14th International Power Electronics and Motion Control Conference EPE-PEMC 2010, pp. T5-60 - T5-63
Ogata, K. (2002) Modern control engineering. India: Prentice Hall
Oral, Ö., Çetin, L., Uyar, E. (2010) A Novel Method on Selection of Q And R Matrices in the Theory of Optimal Control. International Journal of Systems Control, Vol. 1, No. 2, pp. 84-92
Prabakar, R.S., Sujatha, C., Narayanan, S. (2013) Response of a quarter car model with optimal magnetorheological damper parameters. Journal of Sound and Vibration, 332(9): 2191-2206
Sam, Y.Md., Osman, J.H.S., Ghani, M.A. (2004) A class of proportional-integral sliding mode control with application to active suspension system. Systems & Control Letters, 51(3-4): 217-223
Selamat, H., Bilong, S.D.A. (2013) Optimal controller design for a railway vehicle suspension system using Particle Swarm Optimization. u: 9th Asian Control Conference (ASCC), pp.1-5
Shang, R., Zhang, K., Jiao, L., Fang, W., Zhang, X., Tian, X. (2014) A novel algorithm for many-objective dimension reductions: Pareto-PCA-NSGA-II. u: IEEE Congress on of Evolutionary Computation (CEC), Proceedings, pp. 1974-1981
Song, L. (2014) NGPM_v14 matlab code. http://www.mathworks.com/matlabcentral/fileexchange, 14 January 2014
Song, L. (2011) NGPM-A NSGA-II Program in Matlab - User Manual, Version. 4. 1, pp. 1-20
Taghirad, H.D., Esmailzadeh, E. (1998) Automobile Passenger Comfort Assured Through LQG/LQR Active Suspension. Journal of Vibration and Control, 4(5): 603-618
van Niekerk, J., Pielemeier, W., Greenberg, J. (2003) The use of seat effective amplitude transmissibility (SEAT) values to predict dynamic seat comfort. Journal of Sound and Vibration, 260(5): 867-888
Wang, X., Zheng, Z. (2011) Multi-objective optimization of the loading path for tube hydroforming process based on NSGA- II. u: 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC), pp.1247-1251
Wei, X., Li, J., Liu, X. (2013) LQR control scheme for active vehicle suspension systems based on modal decomposition. u: 25th Chinese Control and Decision Conference (CCDC), pp. 3296 - 3301
Yoon, S., Lee, S., Lee, B., Kim, C., Lee, Y., Sung, S. (2013) Design and Flight Test of a Small Tri-Rotor Unmanned Vehicle with a LQR Based Onboard Attitude Control System, International Journal of Innovative Computing. Information and Control, Vol. 9(6), pp. 2347-2360
Zhang, Y., Chen, W., Chen, L., Shangguan, W. (2007) Non-stationary random vibration analysis of vehicle with fractional damping. u: Mechanisms and Machines (NaCoMM07), 13th National Conference, India, Proceedings, pp. 171-178
Zhen, L., Cheng, L. (2006) Road adaptive active suspension control design. u: IMACS Multiconference on Computational Engineering in Systems Applications, Beijing, China, Proceedings, pp. 1347-1350
Zhen, L., Luo, C., Hu, D. (2006) Active suspension control design using a combination of LQR and backstepping. u: Proceedings of the 25th Chinese Control Conference, 2006, China, pp. 123-125