Akcije

Chemical Industry and Chemical Engineering Quarterly / CICEQ
kako citirati ovaj članak
podeli ovaj članak

Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:0
  • preuzimanja u poslednjih 30 dana:0

Sadržaj

članak: 1 od 1  
Supercritical water oxidation: Fundamentals and reactor modeling
(naslov ne postoji na srpskom)
University of Valladolid, Department of Chemical, Engineering and Environmental Technology, High Pressure Process Group, Valladolid, Spain

e-adresamjcocero@iq.uva.es
Ključne reči: supercritical water oxidation; water physical properties; reactor modeling; CFD
Sažetak
(ne postoji na srpskom)
Supercritical water oxidation (SCWO) is a technology that takes advantage of the special solvation properties of the water above its critical point (374°C, 22.1 MPa), to achieve a complete destruction of organic wastes. The oxidation of the organics dissolved in supercritical water (SCW) can be carried out in an homogeneous phase due to the complete miscibility of oxygen with SCW. If the temperature is high enough (above 650°C) a complete destruction of a large variety of organics can be achieved with residence times lower than one minute. Although the energy consumption of the SCWO is very high, with an appropriate heat integration system, the process can be energetically self-sufficient or even produce an excess of energy. The two main challenges of the SCWO are corrosion problems and salt deposition. These problems can be overcome by the use of special construction materials and adequate reactor designs. Due to the high cost of the construction and operation of these reactors, the development of simulations is of great interest. This work gives a brief description of the process and its present challenges, focusing on the calculation of the physical properties of the water and its mixtures, and on the description of the kinetics from an engineering point of view, to finish with a short general description of the state of art in SCWO reactor modeling.
Reference
Abeln, J., Kluth, M., Boettcher, M., Sengpiel, W. (2004) Supercritical Water Oxidation (SCWO) Using a Transpiring Wall Reactor: CFD Simulations and Experimental Results of Ethanol Oxidation. Environmental Engineering Science, 21(1): 93-99
Akiya, N., Savage, P.E. (2002) Roles of water for chemical reactions in high-temperature water. Chemical Reviews, 102(8): 2725-2750
Anderko, A., Pitzer, K.S. (1993) Equation-of-state representation of phase equilibria and volumetric properties of the system sodium chloride-water above 573 K. Geochimica et Cosmochimica Acta, 57(8): 1657-80
Bermejo, D.M., Fernandez-Polanco, F., Cocero, J.M. (2005) Modeling of a transpiring wall reactor for the supercritical water oxidation using simple flow patterns: Comparison to experimental results. Industrial and Engineering Chemistry Research, 44(11): 3835-3845
Bermejo, D.M., Fdez-Polanco, F., Cocero, J.M. (2006) Effect of the transpiring wall on the behavior of a supercritical water oxidation reactor: Modeling and experimental results. Industrial and Engineering Chemistry Research, 45(10): 3438-3446
Bermejo, M.D., Fdez-Polanco, F., Cocero, M.J. (2005) Transpiring Wall reactor for the supercritical water oxidation process: Operational results, modeling and scaling. u: Proceedings of the 10th European Meeting on Supercritical Fluids. Reactions, Materials and Natural Products Processing. Colmar (France). 12-14 December
Bermejo, M.D., Bielsa, I., Cocero, M.J. (2006) Experimental and theoretical study of the influence of pressure on SCWO. AIChE Journal, 52(11): 3958-3966
Bermejo, M.D., Cocero, M.J., Fernandez-Polanco, F. (2004) A process for generating power from the oxidation of coal in supercritical water. Fuel, 83(2): 195-204
Bermejo, M.D., Cocero, M.J. (2006) Supercritical water oxidation: A technical review. AIChE Journal, 52(11): 3933-3951
Brennecke, J.F., Chateauneuf, J.E. (1999) Homogeneous organic reactions as mechanistic probes in supercritical fluids. Chemical Reviews, Washington, 99(2): 433-452
Chen, P., Li, L., Gloyna, E.F. (1995) Simulation of a concentric-tube reactor for supercritical water oxidation. ACS Symposium Series, 608(Innovations in Supercritical Fluids): 348-63
Chung, T.H., Ajlan, M., Lee, L.L., Starling, K.E. (1988) Generalized multiparameter correlation for nonpolar and polar fluid transport properties. Industrial and Engineering Chemistry Research, 27(4): 671-9
Chung, T.H., Lee, L.L., Starling, K.E. (1984) Applications of kinetic gas theories and multiparameter correlation for prediction of dilute gas viscosity and thermal conductivity. Industrial and Engineering Chemistry Fundamentals, 23(1): 8-13
Cocero, M.J., Alonso, E., Sanz, M.T., Fdz-Polanco, F. (2002) Supercritical water oxidation process under energetically self-sufficient operation. Journal of Supercritical Fluids, 24(1): 37-46
Cocero, M.J., Martinez, J.L. (2004) Cool wall reactor for supercritical water oxidation. Modeling and operation results. Journal of Supercritical Fluids, 31(1): 41-55
Cocero, M.J., Alonso, E., Torio, R., Vallelado, D., Fdz-Polanco, F. (2000) Supercritical Water Oxidation in a Pilot Plant of Nitrogenous Compounds: 2-Propanol Mixtures in the Temperature Range 500-750.degree.C. Industrial and Engineering Chemistry Research, 39(10): 3707-3716
Cocero, M.J., Alonso, E., Fdez-Polanco, F. (2002) Supercritical water oxidation of wastewaters and sludges. Engineering in Life Sciences, 2 (7): 195
Cocero, M.J., Vallelado, D., Torio, R., Alonso, E., Fdez-Polanco, F. (2000) Optimization of the operation variables of a supercritical water oxidation process. Water Science and Technology, 42 : 107-113
Dell'Orco, P.C., Li, L., Gloyna, E.F. (1993) The separation of particles from supercritical water oxidation processes. Sep. Sci. Technol, 28, 624-642
Dutournie, P., Mercadier, J. (2005) Unsteady behaviour of hydrothermal oxidation reactors: Theoretical and numerical studies near the critical point. Journal of Supercritical Fluids, 35(3): 247
Ermakova, A., Anikeev, V.I. (2004) Modeling of the oxidation of organic compounds in supercritical water. Theoretical Foundations of Chemical Engineering, 38(4): 333-340
Fauvel, E., Joussot-Dubien, C., Pomier, E., Guichardon, R., Charbit, G., Charbit, F., Sarrade, S. (2003) Modeling of a porous reactor for supercritical water oxidation by a residence time distribution study. Industrial and Engineering Chemistry Research, 42(10): 2122
Fauvel, E., Joussot-Dubien, C., Guichardon, P., Charbit, G., Charbit, F., Sarrade, S. (2004) A double-wall reactor for hydrothermal oxidation with supercritical water flow across the inner porous tube. Journal of Supercritical Fluids, 28(1): 47-56
Franck, E.U. (1987) The physics and chemistry of aqueous ionic solutions. Dordrecht: Publishing Co, p. 337-358
Franck, E.U. (1984) Physicochemical properties of supercritical solvents. Berichte der Bunsen-Gesellschaft, 88(9): 820-5
Goemans, M.G.E., Tiller, F.M., Li, L., Gloyna, E.F. (1997) Separation of metal oxides from supercritical water by crossflow microfiltration. Journal of Membrane Science, 124(1): 129-145
Goto, M., Shiramizu, D., Kodama, A., Hirose, T. (1999) Kinetic analysis for ammonia decomposition in supercritical water oxidation of sewage sludge. Industrial and Engineering Chemistry Research, 38(11): 4500-4503
Griffith, J.W., Raymond, D.H. (2002) The first commercial supercritical water oxidation sludge processing plant. Waste Management, 22(4): 453-459
He, C.H. (1997) Prediction of binary diffusion coefficients of solutes in supercritical solvents. AIChE Journal, 43(11): 2944
Hodes, M., Marrone, P.A., Hong, G.T., Smith, K.A., Tester, J.W. (2004) Salt precipitation and scale control in supercritical water oxidation - Part A: Fundamentals and research. Journal of Supercritical Fluids, 29(3): 265-288
Hong, G.T. (1992) Process for the oxidation of materials in water at supercritical temperatures and subcritical pressures. Patent US 5, 106, 513
IAPWS (1996) Release on the IAPWS formulation 1995 for the thermodynamics properties of ordinary water substance for general and scientific use. www.iapwsorg
Japas, M.L., Franck, E.U. (1985) High pressure phase equilibria and PVT-data of the water-nitrogen system to 673 K and 250 MPa. Berichte der Bunsen-Gesellschaft, 89(7): 793-800
Japas, M.L., Franck, E.U. (1985) High pressure phase equilibria and PVT-data of the water-oxygen system including water-air to 673 K and 250 MPa. Berichte der Bunsen-Gesellschaft, 89(12): 1268-75
Kosinski, J.J., Anderko, A. (2001) EOS for high-temperature aqueous electrolyte and nonelectrolyte systems. Fluid Phas. Equilib, 183-184 75-86
Kriksunov, L.B., Macdonald, D.D. (1995) Corrosion in supercritical water oxidation systems: A phenomenological analysis. Journal of the Electrochemical Society, 142(12): 4069-73
Kritzer, P., Dinjus, E. (2001) An assessment of supercritical water oxidation (SCWO). Existing problems, possible solutions and new reactor concepts. Chemical Engineering Journal, 83(3): 207-214
Kritzer, P. (2004) Corrosion in high-temperature and supercritical water and aqueous solutions: A review. Journal of Supercritical Fluids, 29(1-2): 1-29
Lavrić, E.D., Weyten, H., de Ruyck, J., Plesu, V., Lavric, V. (2005) Delocalized organic pollutant destruction through a self-sustaining supercritical water oxidation process. Energy Conversion and Management, 46(9-10): 1345-1364
Lavrić, E.D., Weyten, H., de Ruyck, J., Plesu, V., Lavric, V. (2006) Supercritical water oxidation improvements through chemical reactors energy integration. Applied Thermal Engineering, 26(13): 1385-1392
Li, L., Chen, P., Gloyna, E.F. (1991) Generalized kinetic model for wet oxidation of organic compounds. AlChe J., 37, 1687-1697
Lieball, K. (2003) Numerical investigations on a transpiring wall reactor for supercritical water oxidation. Zurich: ETH, Doctoral Thesis, no 14-911
Lieball, K., Wellig, B., von Rohr, R.P. (2000) Operation conditions for a transpiring wall reactor for supercritical water oxidation. u: Proceedings of 5th International Congress of Supercritical Fluids, Atlanta, CD Available
Liu, H., Macedo, E.A. (1995) Accurate correlations for the self-diffusion coefficients of CO2, CH4, C2H4, H2O, and D2O over wide ranges of temperature and pressure. Journal of Supercritical Fluids, 8(4): 310-17
Magoulas, K., Tassios, D. (1990) Thermophysical properties of n-alkanes from C1 to C20 and their prediction for higher ones. Fluid Phase Equilibria, 56: 119-40
Marcus, Y. (1999) On transport properties of hot liquid and supercritical water and their relationship to the hydrogen bonding. Fluid Phase Equilibria, 164(1): 131-142
Marias, F., Vielcazals, S., Cezac, P., Mercadier, J., Cansell, F. (2006) Theoretical study of the expansion of supercritical water in a capillary device at the output of a hydrothermal oxidation process. J Supercritical Fluids, 30 August, In Press, Available online
Marrone, P.A., Hodes, M., Smith, K.A., Tester, J.W. (2004) Salt precipitation and scale control in supercritical water oxidation - Part B: Commercial/full-scale applications. Journal of Supercritical Fluids, 29(3): 289-312
Modell, M., Thomason, T.B. (1984) Supercritical water destruction of aqueous wastes. Hazardous Waste, 1, 453-467
Modell, M. Standard handbook of hazardous waste treatment and disposal. New York: Mac Graw Hill, p. 8-153
Muske, K.R., Littell, J.D., Dell, O.P.C., le Loan, A., Flesner, R.L. (2001) Hydrothermal treatment of C-N-O-H wastes: Model-based reactor effluent control. Industrial and Engineering Chemistry Research, 40(5): 1397-1405
Oh, C.H., Kochan, R.J., Charlton, T.R., Bourhis, A.L. (1996) Thermal-hydraulic modeling of supercritical water oxidation of phenol. Energy and Fuels, 10 (2): 326
Phenix, B.D., DiNaro, J.L., Tester, J.W., Howard, J.B., Smith, K.A. (2002) The effects of mixing and oxidant choice on laboratory-scale measurements of supercritical water oxidation kinetics. Industrial and Engineering Chemistry Research, 41(3): 624-631
Ploeger, J.M., Bielenberg, P.A., Dinaro-Blanchard, J.L., Lachance, R.P., Taylor, J.D., Green, W.H., Tester, J.W. (2006) Modeling oxidation and hydrolysis reactions in supercritical water-free radical elementary reaction networks and their applications. Combustion Science and Technology, 178(1-3): 363-398
Portela, J.R., Nebot, E., Martinez, O.E. (2001) Kinetic comparison between subcritical and supercritical water oxidation of phenol. Chemical Engineering Journal, 81(1-3): 287-299
Rice, S.F., Wu, B.J., Winters, W.S. (2000) Engineering modeling of the pine bluff arsenal supercritical water oxidation reactor. u: Proceedings of 5th International Congress of Supercritical Fluids, Atlanta, (CD Available)
Rice, S.F., Steeper, R.R. (1998) Oxidation rates of common organic compounds in supercritical water. Journal of Hazardous Materials, 59(2-3): 261-278
Russell, D.K. (1999) Pick the right material for wet oxidation. Chem. Eng. Prog, March 51-58
Savage, P.E. (1999) Organic chemical reactions in supercritical water. Chemical Reviews, 99(2): 603-621
Schwartzenruber, J., Renon, H. (1989) Extension of UNIFAC to high pressures and temperatures by the use of a cubic equation of state. Industrial and Engineering Chemistry Research, 28(7): 1049
Sengers, J.V., Watson, J.T.R., Basu, R.S., Kamgar-Parsi, B., Hendricks, R.C. (1984) Representative equations for the thermal conductivity of water substance. Journal of Physical and Chemical Reference Data, 13(3): 893-33
Sengers, J.V., Kamgar-Parsi, B. (1984) Representative equations for the viscosity of water substance. Journal of Physical and Chemical Reference Data, 13(1): 185-205
Serin, J.P., Mercadier, J., Marias, F., Cezac, P., Cansell, F. (2005) Use of injectors for the design of injectors of supercritical water oxidation. u: Proceedings of the 10th European Meeting on Supercritical Fluids. Reactions, Materials and Natural Products Processing, Colmar, 12-14 December
Shaw, R.W., Brill, T.B., Clifford, A.A., Eckert, C.A., Franck, E.U.. (1991) Supercritical water: A medium for chemistry. Chem. Eng. News, 23, 26-39
Stenmark, L. (2001) Aqua Critox® the chematur engineering Ab concept for scwo. u: Workshop: Supercritical Water Oxidation -Achievements and Challenges in Commercial Applications, Arlington(Virginia),14-July
Tester, J.W., Holgate, R.H., Armellini, F.J., Webley, P.A., Killilea, W.R., Hong, G.T., Barner, H.E. (1993) Supercritical water oxidation technology: Process development and fundamental research. ACS Symposium Series, 518: 35-76
Uematsu, M., Franck, E.U. (1981) Static dielectric constant of water and steam. Journal of Physical and Chemical Reference Data, 9(4): 1291-306
Vielcazals, S., Mercadier, J., Marias, F., Mateos, D., Bottreau, M., Cansell, F., Marraud, C. (2006) Modeling and simulation of hydrothermal oxidation of organic compounds. AIChE Journal, 52(2): 818-825
Vogel, F., Blanchard, J.D.L., Marrone, P.A., Rice, S.F., Webley, P.A., Peters, W.A., Smith, K.A., Tester, J.W. (2005) Critical review of kinetic data for the oxidation of methanol in supercritical water. Journal of Supercritical Fluids, 34(3): 249-286
Wellig, B., Lieball, K., Rohr, P.R. (2005) Operating characteristics of a transpiring-wall SCWO reactor with a hydrothermal flame as internal heat source. Journal of Supercritical Fluids, 34(1): 35-50
Zhou, N., Krishnan, A., Vogel, F., Peters, W.A. (2000) A computational model for supercritical water oxidation of organic toxic wastes. Adv. Env. Res, 4, 79-95
 

O članku

jezik rada: engleski
vrsta rada: pregledni članak
DOI: 10.2298/CICEQ0702079B
objavljen u SCIndeksu: 29.02.2008.