Metrika članka

  • citati u SCindeksu: [1]
  • citati u CrossRef-u:[1]
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:4
  • preuzimanja u poslednjih 30 dana:2
članak: 2 od 2  
Back povratak na rezultate
Zaštita materijala
2016, vol. 57, br. 4, str. 605-612
jezik rada: engleski
vrsta rada: naučni članak
doi:10.5937/ZasMat1604605D


Tehno-ekonomska analiza proizvodnje nezasićenih poliestara iz otpadnog PET-a
aUniverzitet u Beogradu, Tehnološko-metalurški fakultet
bUniverzitet u Beogradu, Šumarski fakultet

e-adresa: marinko@tmf.bg.ac.rs

Projekat

Usmerena sinteza, struktura i svojstva multifunkcionalnih materijala (MPNTR - 172057)

Sažetak

Nezasićene poliestarske smole (UPe) su sintetisane iz anhidrida maleinske kiseline i proizvoda glikolize, dobijenih depolimerizacijom poli(etilen tereftalata) (PET-a) sa dipropilen-glikolom (DPG) u prisustvu tetrabutil-titanata kao katalizatora. Proizvod glikolize otpadnog PET-a i UPe smole su okarakterisani pomoću FTIR i NMR spektroskopije, elementalne analize, kiselinskog (AV), hidroksilnog (HV) i jodnog broja. Nanokompoziti, bazirani na nezasićenim poliestarskim smolama i nanočesticama silicijum-dioksida modifikovanim heksametildisilazanom, pripremljene su sa namerom da se prikaže jedna od značajnih komercijalnih primena UPe smola. U cilju određivanja mogućnosti mogućih implementacija razvijenih novih tehnologija proizvodnje UPe smola, urađena je neki tehno-ekonomska analiza. Ekonomska korist i profitabilnost procesa prikazane tehnologije su zasnovani na primeni reciklaže sirovog materijala, otpadnog PET-a, što predstavlja jedan od najefektivnijih načina da se očuvaju prirodni resursi, zaštiti životna sredina i uštedi novac. Principi zelene ekonomije su ugrađeni u razvijenoj tehnologiji proizvodnje UPe smola, što se odnosi i na zaštitu životne sredine i dostizanje profitabilnosti bez dodatnih negativnih uticaja na životnu sredinu, odnosno na smanjenje zagađenja bez negativnog uticaja na implementiranu tehnologiju.

Ključne reči

Reference

*** (2008) ASTM D2471-99: Standard test method for gel time and peak exothermic temperature of reacting thermosetting resins
*** (2009) ASTM D882: Standard test method for tensile properties of thin plastic sheeting
*** (1992) ISO 4326: Non-ionic surface active agents: Polyethoxylated derivatives: Determination of hydroxyl value: Acetic anhydride method
*** (2012) ASTM D3644: Standard test method for acid number of styrene-maleic anhydride resins
*** (2014) ASTM D1200: Standard test method for viscosity by Ford Viscosity Cup
Al-Salem, S.M., Lettieri, P., Baeyens, J. (2009) Recycling and recovery routes of plastic solid waste (PSW): a review. Waste management (New York, N.Y.) / Waste Manag, 29(10): 2625-43
Atta, A.M., Abdel-Raouf, M.E., Elsaeed, S.M., Abdel-Azim, A.A. (2006) Mechanical characterization and chemical resistances of cured unsaturated polyester resins modified with vinyl ester resins based on recycled poly(ethylene terephthalate). Journal of Applied Polymer Science, 103(5): 3175-3182
Awaja, F., Pavel, D. (2005) Recycling of PET. European Polymer Journal, 41(7): 1453-1477
Bartolome, L., Imran, M., Cho, B.G., Al-Masry, W., Kim, D.H. (2012) Recent developments in the chemical recycling of PET. u: Material Recycling: Trends and Perspectives, InTech, pp 65-84
Dullius, J., Ruecker, C., Oliveira, V., Ligabue, R., Einloft, S. (2006) Chemical recycling of post-consumer PET: Alkyd resins synthesis. Progress in Organic Coatings, 57(2): 123-127
Güçlü, G., Orbay, M. (2009) Alkyd resins synthesized from postconsumer PET bottles. Progress in Organic Coatings, 65(3): 362-365
Guo, L., Xu, X., Zhang, Y., Zhang, Z. (2013) Effect of functionalized nanosilica on properties of polyoxymethylene-matrix nanocomposites. Polymer Composites, 35(1): 127-136
Karayannidis, G.P., Achilias, D.S., Sideridou, I.D., Bikiaris, D.N. (2005) Alkyd resins derived from glycolized waste poly(ethylene terephthalate). European Polymer Journal, 41(2): 201-210
Katoch, S., Sharma, V., Kundu, P.P. (2010) Water sorption and diffusion through saturated polyester and their nanocomposites synthesized from glycolyzed PET waste with varied composition. Chemical Engineering Science, 65(15): 4378-4387
Li, Y., Han, C., Zhang, X., Bian, J., Han, L. (2013) Rheology, mechanical properties, and biodegradation of poly(ε-caprolactone)/silica nanocomposites. Polymer Composites, 34(10): 1620-1628
Lorenzetti, C., Manaresi, P., Berti, C., Barbiroli, G. (2006) Chemical Recovery of Useful Chemicals from Polyester (PET) Waste for Resource Conservation: A Survey of State of the Art. Journal of Polymers and the Environment, 14(1): 89-101
Pepper, T. (2003) Polyester resin. Lexington, KY: Ashland Chemical Company, 90
Rusmirović, J.D., Radoman, T., Džunuzović, E.S., Džunuzović, J.V., Markovski, J., Spasojević, P., Marinković, A.D. (2015) Effect of the modified silica Nanofiller on the Mechanical Properties of Unsaturated Polyester Resins Based on Recycled Polyethylene Terephthalate. Polymer Composites
Sengupta, R., Bhattacharya, M., Bandyopadhyay, S., Bhowmick, A.K. (2011) A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Progress in Polymer Science, 36(5): 638-670
Tong, L., Pu, Z., Chen, Z., Huang, X., Liu, X. (2013) Effect of nanosilica on the thermal, mechanical, and dielectric properties of polyarylene ether nitriles terminated with phthalonitrile. Polymer Composites, 35(2): 344-350
Torlakoğlu, A., Güçlü, G. (2009) Alkyd–amino resins based on waste PET for coating applications. Waste Management, 29(1): 350-354
Varga, Cs., Miskolczi, N., Bartha, L., Lipóczi, G. (2010) Improving the mechanical properties of glass-fibre-reinforced polyester composites by modification of fibre surface. Materials & Design, 31(1): 185-193