Metrika članka

  • citati u SCindeksu: 0
  • citati u Google Scholaru:[=>]
  • posete u prethodnih 30 dana:5
  • preuzimanja u prethodnih 30 dana:0
članak: 1 od 11  
Back povratak na rezultate
FME Transactions
2013, vol. 41, br. 2, str. 83-95
jezik rada: engleski
neklasifikovan

Identifikacija i analiza popustljivosti u Dekartovom prostoru robota za obradu vertikalne zglobne konfiguracije
aUniverzitet u Beogradu, Mašinski fakultet
bNorthwestern University, Department of Mechanical Engineering, IL, USA

e-adresa: nslavkovic@mas.bg.ac.rs

Sažetak

Primena industrijskih robota vertikalne zglobne konfiguracije za višeosnu obradu glodanjem je ograničena na delove od mekših materijala niže klase tačnosti. Osnovni razlog za ovo je nedovoljna krutost serijske strukture robota koja je nekoliko desetina puta manja od krutosti CNC mašina alatki. U radu je predstavljen metod eksperimentalne identifikacije i analize popustljivosti 5-osnog robota za obradu vertikalne zglobne konfiguracije. Za određivanje popustljivosti robota u Dekartovom prostoru korišćen je prošireni konvencionalni pristup koji je baziran na eksperimentalnoj identifikaciji popustljivosti zglobova i Jakobijan matrici. Analitička analiza obuhvata uticaj popustljivosti svakog zgloba ponaosob na popustljivost robota u Dekartovom prostoru. Eksperimentalno određivanje popustljivosti robota u Dekartovom prostoru je izvršeno merenjem apsolutnih pomeraja vrha robota izazvanih statičkim silama u sva tri Dekartova pravca, iz kojih su zatim određene popustljivosti svakog zgloba.

Ključne reči

machining robot; compliance identification; compliance analysis

Reference

*** (2001) ISO 841:2001 Industrial automation systems and integration-Numerical control of machines- Coordinate system and motion nomenclature
Abele, E., Kulok, M., Weigold, V. (2005) Analysis of a machining industrial robot. u: 10th International Scientific Conference on Production Engineering, Lumbarda, Proceedings, II 1-11
Abele, E., Weigold, M., Rothenbücher, S. (2007) Modeling and Identification of an Industrial Robot for Machining Applications. CIRP Annals - Manufacturing Technology, 56(1): 387-390
Abele, E., Rothenbücher, S., Weigold, M. (2008) Cartesian compliance model for industrial robots using virtual joints. Production Engineering, 2(3): 339-343
Affouard, A., Duc, E., Lartigue, C., Langeron, J.M., Bourdet, P. (2004) Avoiding 5-axis singularities using tool path deformation. International Journal of Machine Tools and Manufacture, 44(4): 415-425
Alici, G., Shirinzadeh, B. (2005) Enhanced stiffness modeling, identification and characterization for robot manipulators. IEEE Transactions on Robotics, 21(4): 554-564
Craig, J.J. (1989) Introduction to robotics: Mechanics and control. Reading, MA, itd: Addison-Wesley
Dumas, C., Caro, S., Garnier, S., Furet, B. (2011) Joint stiffness identification of six-revolute industrial serial robots. Robotics and Computer-Integrated Manufacturing, 27(4): 881-888
Hudgens, J.C., Hernandez, E., Tesar, D. (1991) A compliance parameter estimation method for serial manipulator DSC, Applications of Modeling and Identification to Improve Machine Performance. ASME, Vol. 29, pp. 15-23
Lee, R.S., She, C.H. (1997) Developing a postprocessor for three types of five-axis machine tools. International Journal of Advanced Manufacturing Technology, 13(9): 658-665
Milutinovic, D., Glavonjic, M., Zivanovic, S., Dimic, Z., Slavkovic, N. (2009) Development of robot based reconfigurable machining system. u: Conference on Production Engineering of Serbia (33rd), Belgrade, Proceedings, str. 151- 155
Milutinovic, D., Glavonjic, M., Slavkovic, N., Dimic, Z., Zivanovic, S., Kokotovic, B., Tanovic, L. (2011) Reconfigurable robotic machining system controlled and programmed in a machine tool manner. International Journal of Advanced Manufacturing Technology, 53(9-12): 1217-1229
Milutinovic, D. (1997) Universal compliant device based on SCARA concept. Robotics and Computer-Integrated Manufacturing, 13(4): 319-321
Pan, Z., Zhang, H. (2008) Robotic machining from programming to process control: a complete solution by force control. Industrial Robot: An International Journal, 35(5): 400-409
Sciavicco, L., Siciliano, B. (2000) Modelling and control of robot manipulators. London - Berlin - Heidelberg: Springer-Verlag, 2nd edition
Spong, M.W., Vidyasagar, M. (1989) Robot dynamics and control. New York: John Wiley and Sons
Stelzer, M., von Stryk, O., Abele, E., Bauer, J., Weigold, M. (2008) High speed cutting with industrial robots: Towards model based compensation of deviations. u: Proceedings of Robotic, Munich, 143-146
Tsai, L.W. (1999) Robot analysis: The mechanics of serial and parallel manipulators. New York: Wiley