|
Reference
|
|
Acemoglu, D. (2007) Introduction to modern economic growth (Levine's bibliography). UCLA Department of Economics
|
3
|
Aghion, P., Howitt, P. (1998) Endogenous growth theory. Cambridge MA: MIT
|
|
Arrow, K.J., Kurz, M. (1970) Public investment, the rate of return and optimal fiscal policy. Baltimore -, London: Johns Hopkins Press
|
|
Arrow, K.J. (1968) Applications of control theory to economic growth. Providence: American Mathematical Society, pp. 85-119
|
|
Aseev, S. (2009) Infinite-horizon optimal control with applications in growth theory: Lecture notes
|
|
Atolia, M., Chatterjee, S., Turnovsky, S.J. (2008) How Misleading is linearization?: Evaluating the dynamics of the neoclassical growth model. u: Working Papers, Florida: Department of Economics, State University
|
22
|
Barro, R.J., Sala-I-Martin, X. (2003) Economic growth. New York, itd: McGraw-Hill
|
5
|
Bellman, R.E. (1957) Dynamic programming. Princeton, NJ: Princeton University Press
|
|
Betts, J.T. (2001) Practical methods for optimal control using nonlinear programming. Philadelphia: SIAM Press
|
|
Brunner, M., Strulik, H. (2002) Solution of perfect foresight saddlepoint problems: a simple method and applications. Journal of Economic Dynamics and Control, 26(5): 737-753
|
1
|
Cass, D. (1965) Optimum growth in an aggregative model of capital accumulation. Review of Economic Studies, 32: 233. 240
|
|
Chiang, A.C. (1992) Elements of dynamic optimization. New York: McGraw-Hill
|
|
Dixit, A. (1990) Optimization in economic theory. Oxford, UK: Oxford University Press Inc, passim
|
|
Dorfman, R. (1969) An Economic Interpretation of Optimal Control Theory. American Economic Review, 59(5); 817-831
|
|
Fabbri, G., Gozzi, F. (2008) Solving optimal growth models with vintage capital: The dynamic programming approach. Journal of Economic Theory, 143(1): 331-373
|
|
Fontes, F.A.C.C. (2001) A general framework to design stabilizing nonlinear model predictive controllers. Systems & Control Letters, 42(2): 127-143
|
|
Gill, P.E., Murray, W., Saunders, M.A., Wong, E. (2015) User's guide for SNOPT 7. 5: Software for large-scale nonlinear programming. u: Center for Computational Mathematics Report, La Jolla, CA - San Diego: Department of Mathematics, University of California, 15-3, CCoM
|
|
Gill, P.E., Murray, W., Saunders, M.A. (2005) SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization. SIAM Review, 47(1): 99-131
|
|
Inada, K. (1963) On a Two-Sector Model of Economic Growth: Comments and a Generalization. Review of Economic Studies, 30(2): 119
|
1
|
Intriligator, M.D. (1971) Mathematical optimization and economic theory. Englewood Cliffs, NJ, itd: Prentice Hall
|
|
Judd, K.L. (1998) Numerical methods in economics. The MIT Press, Vol. 1
|
|
Judd, K.L. (1992) Projection methods for solving aggregate growth models. Journal of Economic Theory, 58(2): 410-452
|
|
Kamien, M.I., Schwartz, N.L. (1991) Dynamic Optimization: The Calculus of Variations and Optimal Control in Economics and Management. Elsevier Science, 2nd ed
|
|
Koopmans, T. (1963) On the concept of optimal economic growth. u: Cowles Foundation Discussion Papers 163, Cowles Foundation for Research in Economics, Yale University
|
|
Lopes, M.A., Fontes, F.A.C.C., Fontes, D.A.C.C. (2013) Optimal control of infinite-horizon growth models: A direct approach. u: FEP Working Papers, Universidade do Porto, Faculdade de Economia do Porto
|
11
|
Lucas, R.E. (1988) On the mechanics of economic development. Journal of Monetary Economics, 22, 3-42
|
|
Ljungqvist, L., Sargent, T.J. (2012) Recursive macroeconomic theory. The MIT Press, Vol. 1; 3rd ed
|
|
Mercenier, J., Michel, P. (1994) Discrete-Time Finite Horizon Approximation of Infinite Horizon Optimization Problems with Steady-State Invariance. Econometrica, 62(3): 635
|
|
Mulligan, C.B., Sala-i, M.X. (1991) A note on the time-elimination method for solving recursive dynamic economic models. u: NBER Technical Working Papers 0116, National Bureau of Economic Research, Inc
|
5
|
Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F. (1964) The mathematical theory of optimal processes. New York: The Macmillan Company
|
1
|
Ramsey, F.P. (1928) A mathematical theory of saving. Economic Journal, vol. 38, str. 543-559
|
|
Rao, A.V. (2009) A survey of numerical methods for optimal control. Advances in the Astronautical Sciences, 135(1); 497-528
|
21
|
Romer, P.M. (1990) Endogenous Technological Change. Journal of Political Economy, 98(S5): S71
|
2
|
Romer, P.M. (1994) The origins of endogenous growth. Journal of Economic Perspectives, vol. 8, br. 1, str. 3-22
|
|
Sargent, R.W.H. (2000) Optimal control. Journal of Computational and Applied Mathematics, 124(1-2): 361-371
|
30
|
Solow, R.M. (1956) A contribution to the theory of economic growth. Quarterly Journal of Economics, vol. 70, br. 1, str. 65-94
|
|
Stokey, N., Lucas, R.E., Prescott, E.C. (1989) Recursive methods in economic dynamics. Cambridge, Mass: Harvard University Press
|
|
Trimborn, T., Koch, K.J., Steger, T.M. (2004) Multi-dimensional transitional dynamics: A simple numerical procedure. CER-ETH Economics working paper series
|
|
Uzawa, H. (1965) Optimum Technical Change in An Aggregative Model of Economic Growth. International Economic Review, 6(1): 18
|
|
von Stryk, O., Bulirsch, R. (1992) Direct and indirect methods for trajectory optimization. Annals of Operations Research, 37(1): 357-373
|
|
Wolman, A.L., Couper, E.A. (2003) Potential consequences of linear approximation in economics. Economic Quarterly, 51-67
|
|
|
|